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Very-Short-Wavelength Collective Modes in Fluids 
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The existence of very-short-wavelength collective modes in fluids is discussed. 
These collective modes are the extensions of the five hydrodynamic (heat, 
sound, viscous) modes to wavelengths of the order of the mean free path in a gas 
or to a fraction of the molecular size in a liquid. They are computed here 
explicitly on the basis of a model kinetic equation for a hard sphere fluid. At low 
densities all five modes are increasingly damped with decreasing wavelength till 
each ceases to exist at a cutoff wavelength. At high densities the extended heat 
mode softens very appreciably for wavelengths of the order of the size of the 
particles and becomes a diffusion-like mode that persists till much shorter 
wavelengths than the other modes. Except for the shortest wavelengths these 
collective modes and in particular the heat mode dominate the dynamical 
structure factor S(k, oo) for atl densities. The agreement of the theory with 
experimental S(k, w) of liquid Ar seems to imply that very-short-wavelength 
collective modes also occur in real fluids. 

KEY WORDS: Hydrodynamical modes; collective modes; fluids; kinetic 
theory; neutron scattering. 

1. I N T R O D U C T I O N  

T h e  t ime  e v o l u t i o n  of  smal l  d i s t u r b a n c e s  tha t  v a r y  s lowly  in space  a n d  t i m e  

in a f lu id  in  t h e r m a l  e q u i l i b r i u m  c a n  be  d e s c r i b e d  in t e rms  of  h y d r o d y -  

n a m i c  modes ,  i.e., in t e rms  of  the  e igenva lues  a n d  e i g e n f u n c t i o n s  of  the  

l i nea r i zed  e q u a t i o n s  of  h y d r o d y n a m i c s .  (I) These  h y d r o d y n a m i c  m o d e s  a re  

the  h e a t  m o d e ,  two  s o u n d  m o d e s ,  a n d  two  v i scous  modes ,  wh ich  cor re -  
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spond to the eigenvalues 

zt t  ( k )  = - O T k  2 

z+ ( k )  = +_ick - r k  2 (1.1) 

z~, = -- t,k 2 (i --- 1,2) 

respectively. (2) In fact, the real parts of the z ( k )  are the inverse decay times 
associated with the hydrodynamic modes each of which corresponds to 
a particular disturbance of the fluid. In (1.1) k is the (small) wave num- 
ber describing the spatial variation of the disturbances, D r = ~ / n c  e is 
the thermal diffusivity, p = ~ l / m n  the kinematic viscosity, F = ~v + 
�89 f / n m  + �89 - 1)D T the sound damping constant, where X is the thermal 
conductivity, ~/ the shear viscosity, f the bulk viscosity, n the number 
density, m the mass of the particles, , / =  cp/c,~ the ratio of the specific heats 
per particle at constant pressure (ce) and constant volume (cv), and c the 
sound velocity. 

The question we address ourselves here to is to what extent these 
hydrodynamic modes can be extended to larger values of k and then 
describe small disturbances with large values of k, i.e., disturbances with 
small amplitudes but with rapid spatial variations. We will call the hydro- 
dynamic modes and their extensions collective modes. 

The discussion of the existence of collective modes beyond the hydro- 
dynamical regime can be based on kinetic theory. 

For low densities, i.e., for dilute gases, one can use the linearized 
Boltzmann equation. In fact Foch and Ford (2) showed, on the basis of a 
model kinetic equation that approximates the linearized Boltzmann equa- 
tion, that the sound modes could be extended to values of k such that 
k l  ~ 1, where l is the mean free path in the gas. 

Up until the present day one has not been able to generalize the 
Boltzmann equation in a systematic way to higher densities. Therefore, in 
that case--i.e., for dense gases or liquids--no well-founded kinetic equation 
of the same stature as the Boltzmann equation is available. Only for the 
special case of a fluid of hard spheres has an approximate kinetic equation 
been derived in a variety of ways by a number of authors. (3-7) We will 
show in Section 2 that, although approximate, the kinetic operator occur- 
ring in this equation possesses a number of desirable properties. Also, the 
equation reduces for small values of k to the linearized Boltzmann equation 
for hard spheres for low densities and to the linearized Enskog equation for 
high densities. (6' 8) We will base our discussion of the existence of collective 
modes in fluids on what we will call this generalized Enskog equation. Like 
Foch and Ford we actually study a model kinetic equation that approxi- 
mates this generalized Enskog equation. It will be argued later that the 
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approximate equation we study appears to be a good approximation to the 
generalized Enskog equation. 

In this paper we study in particular the collective modes of the 
generalized Enskog equation and their importance for the decay of small 
density disturbances in the fluid. In other words we compute the dynamical 
structure factor S(k,  to) or its Fourier transform, the intermediate scattering 
function given by 

F(k , t )  = ~ 2 e x p ( - i k . r j )  ~'] exp [ ik . r t ( t ) ]  (1.2) 
j = l  l=1  0 

and the intermediate self-scattering function 

FS(k, t )  = ( e x p { - i k - J r  I - r , ( t ) ]}  )0 (1.3) 

Here ry(t) is the position of part iclej  ( j  = 1, 2 . . . . .  N)  in the fluid at time 
t, ry ~ ry(0), the brackets indicate an average over a canonical ensemble, 
and the bulk limit is supposed to be taken on the right-hand sides. We will 
show that for not too large values of to, S(k, to) of a hard sphere fluid 
computed on the basis of our generalized Enskog equation agrees well with 
S(k,  to) determined by the collective modes alone. In fact, we will derive an 
expression for S(k,  to) that is a generalization of the well-known Landau-  
Placzek formula for light scattering (l) [cf. Eq. (3.34)] 

1 f~_~ dte-i ,~tF(k,t)  S ( k, to) = - ~  o~ 

= 1S(O){  Y -  1 Re 1 
~r 7 ito - ZH(k ) 

+ Re ito- +(k) i to-z_(k)  

= 1 nke TXrl  Y - 1 Drk  2 
r [ r 00 2 + , ,(Drk2~ 2 

Fk 2 

+ -~y (~ - ok) 2 4- (Fk2) 2 
4- ]} 

(,0 + ck) 2 + (rk2)  2 

(1.4) 

Here we have used that S(0) --- l i m ~  0S(k) = nk BTXT, where S(k)  is the 
static structure factor defined by 

S(k)  = 1 + n f  d r e x p ( - i k . r ) [  g ( r ) -  1] (1.5) 
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with XT = (1/n)(On/OtT)T the isothermal compressibility, p the pressure, T 
the absolute temperature, k B Boltzmann's constant, and g(r) the radial 
distribution function. Moreover, the experimental S(k,~0) for liquid Ar 
agrees with the S(k ,  ~o) computed on the basis of the heat mode alone, if a 
simple adaptation of the hard sphere fluid to a real liquid is made. 
Therefore, we believe that the existence and importance of collective modes 
-- in particular the extended heat mode--is not an artifact of our model 
kinetic equation for hard spheres, but is also true for real fluids. A very 
brief account of the main results contained in this paper has been given in a 
previous publication. (9) The details of the calculations to obtain these 
results are given here. 

In Section 2 some general properties of the kinetic operator occurring 
in the generalized Enskog theory will be discussed. In particular a number 
of properties that are essential and should be kept in any meaningful 
kinetic model are mentioned. In Section 3 the model kinetic operator used 
in our calculations is derived and the way the collective modes can be 
identified and computed is outlined. In Section 4 the main results of the 
calculations are summarized. In general the collective modes become in- 
creasingly damped with increasing k and disappear when k is of the order 
of the inverse mean free path of the fluid. For low densities the extended 
hydrodynamic modes are smooth functions of k. For high densities a 
peculiar behavior manifests itself for values of k where the wavelength 
?~ = 2~r/k ~ a, the hard sphere diameter. In particular the heat mode shows 
a very appreciable softening at ~ ~ a. That is, the heat mode eigenvalue 
ZI-l(k) after an initial decrease according to Eq. (1) starts to increase 
appreciably till it reaches a maximum value close to zero at ?~ ~ a. For 
larger values of k this mode continues as a diffusionlike mode. Also the 
sound modes show a complicated behavior around ?~ ~ o. In Section 5 a 
number of comments, in particular about the implications of these results 
for neutron scattering of real fluids, are made. 

2. THE ENSKOG KINETIC OPERATORS 

In this section we discuss properties of the two kinetic operators L(k) 
and LS(k) that occur in the generalized Enskog theory. We do this not only 
to show that these operators are meaningful kinetic operators that satisfy a 
number of basic requirements, but also in view of the approximation 
procedure presented in Section 4 that will be based in part on these 
properties. 

The operators L(k) and LS(k) are one-particle operators that replace in 
the generalized Enskog theory the N-particle Liouville operator as the 
operators that govern the evolution of time correlation functions like those 
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defined in Eqs. (1.2) and (1.3). In fact, in the generalized Enskog theory one 
has for F(k, t) and FS(k, t), respectively, (3'5'8'1~ the expressions 3 

Fe(k, t) = S(k)(exp[  L ( k ) t ] )  (2.1) 

F}(k, t) = (exp[ LS(k)t] ) (2.2) 

Here and in the rest of the paper the brackets denote a velocity average 
with the normalized Maxwell velocity distribution function 

( ' ' " ) = f a v * ( v ) ' ' "  (2.3) 

with 

{ m ]3/2 exp( - my2 ~(v) = ~ ~ } . ~ ) (2.4) 

where v is the velocity of a hard sphere with speed v = [v]. L(k) and L~(k) 
are defined by 

L(k) = - ik.  v + nxA u + nA k (2.5) 

L ' (k)  = ik.  v + nxA" (2.6) 

with - ik.  v representing the free streaming of a particle and X = g(o) the 
radial distribution function at contact. A k and A s are binary collision 
operators that act on an arbitrary function h (v) as 

A h(v) = -o2f.  0do f av' (v')g 

• ( h ( v ) -  h(v*) + e x p ( - i k .  ~ o ) [ h ( v ' ) -  h(v'*)]} (2.7) 

= aa f av',(v')g, o[ h(v) - h(v*) ] (2.8) A'h(v) -O2fg. S>0 

where g = v - v' is the relative velocity of two colliding hard spheres and 
the velocities of the restituting collision v* and v'* are given by the relations 
v* = v - (g. 8)8, v'* = v' + (g. 8)8 with 8 a unit vector and o8 defining 
the geometry of the binary collision. The "mean field" operator A k acts on 
an arbitrary function h (v) as 

Akh(v)=[ C(k) - xCo(k)] f dv' ep(v')ik, v'h(v') (2.9) 

where C(k) is the direct correlation function that is related to the structure 

3 Equations (2.1) and (2.2) apply for positive times only. In order to determine Fourier 
transforms we will use that F(k, t) and FS(k, t) are symmetric in t, also in the generalized 
Enskog theory. 
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factor S(k) by the equation 

S ( k ) -  1 
C ( k ) -  ,S(k)  (2.10) 

Co(k ) is the low-density limit of C(k) and according to Eq. (1.5) given by 

d r e x p ( - i k  .r) = -4~ra 3 j,(ko) (2.11) C~ = <o ko 

where jl(x) stands for the spherical Bessel function jn(X) with n = 1.(1I) 
In order to discuss some basic properties of the operators L(k) and 

L'(k), we first give some properties of the operators A k and A k. 
(1) The operator A k has the properties 

l ima  k = 0 (2.12) 
n --->0 

l ima  k = 0 (2.13) 
k--~0 

lim A k = 0 (2.14) 
k---> oo 

To prove these properties one uses, in addition to Eq. (2.9), that in the limit 
of low densities X -- 1, C(k) = Co(k) and that for large k both Co(k)~l /k  2 
[cf. Eq. (2.11)] and C ( k ) ~ l / k  2 [cf. Eq. (2.10)] and Eq. (1.5). 

(2) The collision operator A k has the properties 

lim A k = A 0 (2.15) 
k - - ) 0  

lim A k = A" (2.16) 
k---) oe 

where A 0 is the linearized Boltzmann collision operator and A' the 
Lorentz-Boltzmann collision operator. 

The equation (2.16) follows from the equations (2.7) and (2.8). We note 
that both operators A k and A k depend on k through the parameter ko only. 
This follows for A k directly from Eq. (2.7) and for A k from Eqs. (2.9), 
(2.10), and (1.5) and that g(r) depends on rio. Therefore, in addition to the 
equalities (2.13)-(2.16) one can say that for ka << 1, A u ~ A 0 and for ka >> 1, 
A k ~ A  s a n d A k ~ 0 .  

These properties of A k and A k imply the following properties for L(k) 
and L '  (k): 

L(k) ~ L~(k) (ko >> 1) 

For low densities one has 

L(k) = - ik- v + nA 0 (ka << 1) 

LS(k )~  - i k "  v + nA ~ 

Thus L(k) tends to 

(2.17) 

(2.18) 
(2.19) 

the inhomogeneous linearized Boltzmann operator 
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- ik.  v + nA 0 and L'(k)  to the inhomogeneous Lorentz-Boltzmann opera- 
tor - ik- v + nM for sufficiently low densities. For all densities and k--> 0 
one has 

L(O) = n x A  o (2.20) 

Ls(O) = nx  As (2.21) 

as follows from eqs. (2.5), (2.6), and (2.13). 
The Boltzmann collision operator A 0 has five zero eigenfunctions, 

which are the five collision invariants 1, v, v 2, while the Lorentz-Boltzmann 
collision operator M has only one zero eigenfunction 1. Thus 

L ( 0 ) ~ j ( v )  = 0 ( j  = 1 . . . . .  5) (2.22) 

has five nonzero solutions and 

LS(0)cp,(v) = 0 (2.23) 

has one nonzero solution, where the cpj(v) are the following orthonormal 
linear combinations of the collision invariants: 

cp,(v) = 1 (2.24) 

cP2(v ) = ( t im)  1/21) z (2.25) 

q~3(V) = ~--6 ( ~mv2 -- 3) (2.26) 

cp4(V ) = ( f lm) ' /2vx (2.27) 

cps(v ) = (flm)l/2vy (2.28) 

Here/3 = 1 / k B T ,  (r = 6jl and the z axis of our coordinate system has 
been chosen parallel to the vector k. 

We are especially interested in the collective modes of the operators 
L(k) and LS(k). These will appear as particular terms in the spectral 
decomposition of these operators, i.e., in 

L(k) = ~ [qZj)zj(k)(f~jl (2.29) 
J 

LS(k) = ~] (2.30) 
J 

Here the bra-ket  notation refers to the inner product 

( f [  g )  = ( f , g )  

a n d j  runs over all eigenvalues z j (k)  

C(k)*j(k,  v) 

Ls(k) 'j(k, V) 

(2.31) 

of L(k) and zs(k ) of LS(k)  defined by 

= zj(k)xt'j(k, v) (2.32) 

= z / ( k ) ~ ( k ,  v) (2.33) 
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for the right eigenfunctions q'j(k, v) and ~I'}(k, v) and by 

L*(k)cI,j(k, v) = zj.* (k)%(k, v) (2.34) 

L st(k)cb~(k, v) = z /*(k)~(k,  v) (2.35) 

for the left eigenfunctions ~j(k, v)and ~}(k, v). The Hermitian conjugate (9* 
of an operator 0 is defined with respect to the inner product (2.31), i.e., 
(tgtfl g ) =  ( f lOg).  The right and left eigenfunctions are orthonormal so 
that 

(Os ~l) = 8jr (2.36) 

(O;*xI,~) = 8)t (2.37) 

The collective modes in (2.29) and (2.30) are those eigenfunctions and 
eigenvalues appearing on the right-hand sides of Eqs. (2.29) and (2.30) for 
which the eigenvalues go to zero for k--> 0. For the hydrodynamic modes, 
i.e., the collective modes for small k, explicit expressions can be obtained 
by applying perturbation theory to the eigenfunctions and eigenvalues at 
k = 0, i.e., the ~pj of (2.24)-(2.28), using k as a small parameter. Or, with 
Eqs. (2.18) and (2.19) the hydrodynamic modes are the perturbed eigenval- 
ues and eigenfunctions of the Eqs. (2,22) and (2.23), using - i k .  v as a 
small perturbation. Since there are five eigenfunctions of Eq. (2.22) and one 
eigenfunction of Eq. (2.23), there are correspondingly five hydrodynamic 
modes for L(k) and one for L'(k), We only give for later reference the 
results. Derivations can be found in the literature (7) and in Appendix C. 

(1) There is one heat mode j  = H in (2.29) with eigenvalue Zlt(k ) given 
by 

z , ,  = - + |  4) ( 2 , 38 )  

where Dre is the thermal diffusivity as given by the Enskog dense gas 
transport theory. (12) To lowest order in k, the eigenfunctions are 

t (2.39) ~H(0,v) = ~1 (/~m)!/2 r 

~H(0, v ) - 1 [YS(0)qq 1 ~3] (2.40) 
c2S (0) (/3m)'/2 

where 6 is proportional to the speed of sound c and given by 

6 =  el(  7 - t ) /y]  '/2 (2.41) 

The orthonormality (2.36) of q s  and q5/i given by Eqs. (2.39) and (2,40) 
can easily be proved using the expression for S(0) given below Eq. (1.4) and 
the thermodynamic relation mnc 2 = 7/Xr. 
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(2) There are two sound modes, j = +,  in (2.29) with eigenvalues 
given by 

z+_ ( k )  = + i c k  - F E k  2 + (9(k 3) (2.42) 

where F E is the sound damping as given by the Enskog dense gas theory. ~ 12) 
To lowest order in k, the right eigenfunctions are given by 

�9 I' + (0, v) - 1 
_ ( f l m ) l / 2 S ( O )  ~t -T- c~z + Yq~3 (2.43) 

while the left eigenfunctions are given by 

dp+(0,v) = _.L[2c 2 ( 1------J~ r + t i m ) l / 2  &p3] (2.44) 

The orthonormality of xt,_+ and ~_+ can be proved in a similar way as for 
~ n  and qb B. 

(3) There are two shear modes, j = vl and j = P2 in (2.29) with 
eigenvalues given by 

z . , ( k )  = z~2(k  ) = z . ( k )  = - l, E k  2 + 0(k 4) (2.45) 

where ue is the kinematic viscosity as given by the Enskog dense gas 
theoryJ 12) To lowest order in k, the eigenfunctions are 

't'.,(0, v) = ~.,(0, v) = 9~4 (2.46) 

q'~2(0, v) = ~,2(0, v) = q05 (2.47) 

(4) The diffusion mode, j = D, in (2.30) has an eigenvalue given by 

z ~  ( k )  = - D e k  2 + 0(k 4) (2.48) 

where D e is the self-diffusion coefficient as given by the Enskog dense gas 
theory.(]2) To lowest order in k ,  the eigenfunctions are 

q~(0, v) = ~9(0, v) = ~1 (2.49) 

We remark that the equations (2.38), (2.42), and (2.45) for the hydrody- 
namic eigenvalues correspond to those derived from linearized hydrody- 
namics as given in Eq. (1.1) except that the transport coefficients have been 
replaced by their values according to the Enskog theory. 

The collective modes associated with the operators L(k) and LS(k) are 
these five hydrodynamic modes and their continuous extensions to larger 
values of k as long as these extensions can be uniquely determined. Hence, 
there are five collective modes in (2.29) denoted in general b y j  = H, +,  u 1, 
u 2 and one collective mode in (2.30) denoted in general b y j  = D. 
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In the next section approximate expressions will be introduced for L(k) 
and LS(k) in order to be able to determine explicitly these collective modes 
for all k for which they exist. 

We now mention five exact properties of the eigenvalues and eigen- 
functions of L(k) and LS(k) and in particular, therefore, also of their 
collective modes. These properties imply that L(k) and L~(k) satisfy a 
number of basic conditions that every kinetic operator describing the time 
evolution of a fluid should have. In addition, however, we will use these 
five properties in the approximation procedure discussed in the next section 
in that we impose these five conditions on the approximations to L(k) and 
LS(k) that we will use. This will ensure that also the operators that 
approximate L(k) and L~(k) employed in the next section possess a number 
of desirable basic properties and that they contain collective modes of the 
same character as L(k) and L'(k). These five properties are as follows: 

(1) All eigenvalues in (2.32)-(2.35) satisfy for k ~ 0 

< 0 (2.50) 

R e q ( k  ) < 0 (2.51) 

Using (2.38), (2.42), (2.45), and (2.48), this implies that the transport 
coefficients as given by the Enskog theory are all positive. This property, 
which is closely related to an H theorem proved by R6sibois, (t3) also 
ensures that time correlation functions like (1.2) and (1.3) decay to zero for 
long times. A proof is given in Appendix B, where also the next three 
properties are derived. 

(2) The right and left eigenfunctions of L(k) and LS(k) are related for 

~l,j(k) + I S ( k )  - 1 ] (~t ' j (k)) 
~j* (k) = (2.52) 

( [* j (k)]  2) + [  S ( k ) - 1  ] ('t'j(k)) 2 

. j(k) 
q)j*(k) - ( [~;(k)]2)  

all k by 

(2.53) 

These equations are not only generalizations to larger values of k of known 
relations between right and left eigenfunctions of the Boltzmann operators 
defined in (2.18) and (2.19), i.e., left eigenfunctions are proportional to the 
complex conjugates of right eigenfunctions, but also of the hydrodynamic 
modes [cf. Eqs. (2.38)-(2.49)]. 

(3) Each right eigenfunction qPj(k) is for all values of k either even or 
odd in v x and either even or odd in vy. In addition, upon interchange of v x 

and vy, each eigenfunction changes into an eigenfunction with the same 
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eigenvalue. The same properties hold for the left eigenfunctions due to the 
Eqs. (2.52) and (2.53). 

As a consequence, in particular the extended heat and sound modes as 
well as the extended diffusion mode will be even in Vx and vy since the 
corresponding hydrodynamic modes have this property. Similarly, one 
extended shear mode will be odd in v x and even in vy, while one will be 
even in vy and odd in Vx, where the second mode can be obtained from the 
first by interchanging v x and vy, because the corresponding hydrodynamic 
modes have these properties. Furthermore, the extended shear mode eigen- 
values are equal for all k, i.e., 

z~,(k) = z~ (k )  = z~(k)  (2.54) 

(4) If zj(k),  'I'j(k,v) and z f ( k ) ,  q~}(k,v) satisfy (2.32) and (2.33), 
respectively, then one has that 

L(k) ' f f ' f (k ,  vx, Vy , - v z )  = z f l ( k ) ~ ; ( k ,  vx,vy , - v z )  (2.55) 

LS(k)~}*(k ,  vx, v y , - v z )  = zf*(k)',t '}*(k, v x , v y , - v ~ )  (2.56) 

This means that the eigenvalues in the spectral decompositions (2.29) and 
(2.30) appear in complex conjugate pairs and that the eigenfunctions are 
related by Eqs. (2.32), (2.33), (2.55), and (2.56). Thus also the extended 
sound modes will have complex conjugate eigenvalues and the extended 
heat, shear, and diffusion eigenvalues will always be real. For, if any of 
these quantities were complex, one would have more than five hydrody- 
namic modes, as would follow from Eqs. (2.55) and (2.56) and the proper- 
ties discussed under point 3. 

(5) Since for ko >> 1, L(k) ~ LS(k), the eigenvalues and the right and 
left eigenfunctions of L(k) will approach the corresponding ones of L'(k) 
for ko >> 1. Also, for low densities, the eigenvalues and eigenfunctions of 
L(k) will approach the corresponding ones of the inhomogeneous Boltz- 
mann operator defined on the right-hand side of Eq. (2.18). 

We remark that this operator as well as the operator defined on the 
right-hand side of Eq. (2.19) depend on k through the paramenter kl  o, 
where l 0 = 1/~7no2~ is the low-density value of the mean free path l. For 
higher densities the operator L~(k) depends on k through klE, while L(k) 
depends on k through kl  E and ko [cf. the discussion below Eq. (2.16)]. Here 
l E = lo/X is the mean free path in the Enskog theory. Associated with 10 
and l E are mean free times t o = lo / (V  ) and t e = l e / ( v  ), respectively, where 
(v )  = 2,/2- / (  ]~m't/') 1/2 lS the average value of the speed v. 

We now outline the procedure we follow to determine the collective 
modes of L(k) and LS(k). First we use the following inverse Laplace 
transform representations of the evolution operators exp[L(k)t] and 
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exp [L s (k) t] 

expIL(k) t  ] 

e x p [ L S ( k ) t ]  

= fi_oo dz e zt 

ioo 2~ri z - -L(k )  

f_ 
i o o  d z  e z t  

= -ioo 2qri z + i k .  v -  n x A  u -  nit k 

= f i~ dz , e z t  

,oo 2~ri z LS(k) 

= fioo dz e zt 
ioo 2qri z + i k .  v---- n x A  s 

(2.57) 

(2.58) 

These representations can be used in view of the Eqs. (2.50) and (2.51). It 
will be clear that by locating the poles in the complex z plane of the 
integrands on the right-hand sides of the Eqs. (2.57) and (2.58) and 
performing the integrals around the poles, eigenvalues and eigenfunctions 
in the spectral representations (2.29) and (2.30) of L(k) and LS(k) are 
obtained. In particular the collective modes can be identified from those 
poles that go to zero for k ~ 0. Thus the collective modes of the operators 
L(k) and LS(k) can be found by inverting the operators [ z -  L(k)] and 
[z - LS(k)]. Writing the operator (z - L) as an oo x ~ matrix with respect 
to a complete set of functions of v, one finds the collective modes among 
the singularities of the inverse matrix and similarly for (z - L s) [cf. next 
section, below Eq. (3.18)]. The approximation discussed in the next section 
consists in replacing the actual oo matrix by a simpler matrix that can be 
explicitly inverted. The approximation we use will only approximate the 
collision operators A k and A s but will treat the operators - ik- v and A k [in 
L(k) and LS(k)] exactly. 

3. EVALUATION OF THE ENSKOG OPERATORS 

As pointed out in the previous section, in order to determine the 
inverses of the operators [z - L(k)] and [z - LS(k)] we approximate the 
operators L(k) and LS(k) by infinite matrices that can be inverted. In fact 
we introduce a series of approximate expressions L(M)(k) and LS(M)(k), 
labeled with an index M, for the exact Enskog operators L(k) and LS(k), 
respectively, such that (a) for increasing M, L(M)(k)--~ L(k) and Ls(M)(k) 
~LS(k) ;  (b) for each M, L(M~(k) and LS(M)(k) satisfy the five basic 
properties discussed in Section 2, so that L(U~(k) possesses for each M five 
collective modes and LS(M)(k) one collective mode of the proper character. 

We define L(M)(k) and LS(M)(k) each as sums of multiplication 
operators proportional to - ik .  v and matrix operators characterized by M, 
where M refers to M functions of a complete set of orthonormal polynomi- 
als {cpj). This set {r contains, in addition to the polynomials ~1 . . -  ~% 
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defined by Eqs. (2.24)-(2.28), polynomials of increasing order in v x, vy, and 
v z (cf. Appendix A). 

L(M)(k) and L '(M) (k) are given by the relations 

with 

L(M)(k) = -- ik- v + nx A(M) + nA k 

L'(M)(k) = - ik- v + nx A~(M) 

(3.1) 

(3.2) 

AS ( / )  = lim A ( / )  (3.3) 
k-~oo 

Thus for each M, L (g ) (k ) ' ~  L~(g)(k) for ko >> 1, similarly as in Eq. (2.17) 
for L(k) and L'(k) .  In Eq. (3.1) no approximation for A k was introduced, 
since A k can be written, with Eqs. (2.9) and (2.11) in the form of a one-term 
matrix operator 

\ i~-~ kC(k) 1 
ilk= 99,2-~E j,(ko) + -  J(992[ (3.4) 

4~ro2X 

The approximations A(g)(k) to A k that we use here follow from the 
matrix operator representation 

A~ = ~ N, 199j)aj,,(ko)<99,1 (3.5) 
j=l  l=I 

by considering 

M M 

a(k M) = Z ~ 199j>f~j&o)(99,1 
j = l  l=1  

+ [ g+  (k)(992 - PM992eM ) + h+ (k)(1 - eM )]e+ 

+ [ g_ (k)(99 2 - PM992PM)+ h_ (k)(1 - PM)]P_ (3.6) 

In the Eqs. (3.5) and (3.6) the matrix elements f~jz = (99jAk99t) are discussed 
in Appendix A, the projection operator PM projects on the M functions 
99a . .  �9 99M, the projection operator P+ projects on functions that are even 
in both v, and vy, the projection operator P_  = 1 -  P+ and the four 
functions g• (k) and h_+ (k) are discussed below. We remark that in our 
calculations P+ and P_  always act on functions that are either even or odd 
in v x and either even or odd in Vy, so that P+ and P_  result in multiplica- 
tion of these functions by 0 or 1. In particular each polynomial 99j in the set 
(99j} is either even or odd in vx, in vy, and in v z. Therefore, the expression 
(3.6) for A(k M) is such that the M • M blocks of matrix elements of A k in 
(3.5) and of A(k M) in (3.6) with j ,  l < M are identical. Since all matrix 
elements of the terms in (3.6) involving g_+ and h_+ taken between 99j and 99l 
withj ,  l < M vanish, the terms in (3.6) containing g_+ and h_+ are approxi- 
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mations to the matrix operator representation (3.5) outside the M • M 
block with j,  l < M. 

We also note that one cannot replace A k by the M • M block on the 
right-hand side of Eq. (3.6) alone, since this would introduce an infinite 
number of conserved quantities of A~k M), in particular also of L(M)(O) 
-~ nxA~o M), viz., all polynomials orthogonal to ~l . . .  ~PM" This would lead 
to a model with an infinite number of hydrodynamic modes that does not 
satisfy the five basic properties of L(k) mentioned in the previous section. 
Usually in approximations of the type discussed here--first introduced by 
Bhatnagar, Gross, and Krook (14) and Gross and Jackson (~5)-the part of 
the matrix operator representing A k outside the M x M block is approxi- 
mated by an operator of the form a ( 1 -  PM), where a is an adjustable 
parameter. Such an approximation will lead to L(M)(k) operators that 
satisfy for M >/5 and for a < 0 all the five basic properties mentioned in 
Section 2 but give for M = 5 the correct value for one transport coefficient 
only at low densities. In our work we have chosen the more complicated 
form (3.6) based on the following considerations. 

Firstly, all the properties of L (") (k) mentioned in the beginning of this 
section will be satisfied by L(M)(k) of the form (3.6) if M/> 5, the functions 
h_+ are strictly negative and the functions g._ purely imaginary and vanish- 
ing for k = 0 as well as k = c~. This is shown in Appendix B. Secondly, the 
matrix inversion that has to be carried out is not more complicated for the 
form (3.6) of L (M) (k) than for the simple form a(1 - P~4) mentioned above, 
since this inversion depends mainly on the number M of polynomials that 
occur in the first part of L(M)(k) in (3.6). The smallest value of M that 
allows the requirements mentioned in the beginning of this section to be 
satisfied is M = 5. Taking M = 5 in (3.6), the four functions g+_ (k) and 
h_+ (k) are used to obtain as good approximations as possible to the three 
hydrodynamic eigenvalues p, Dr, and I" of L(k) for small k. Now for low 
densities, the kinematic viscosity P0, i.e., the value of the kinematic viscosity 
as given by the Boltzmann equation (in first Enskog approximation), is 
determined by the matrix element f~6,6(0), where ~6 represents a normalized 
shear current [cf. Appendix C Eq. (C.21a)]. Similarly, the Boltzmann value 
(in first Enskog approximation) for the thermal diffusivity Dro is deter- 
mined by ~7,7(0), where ~7 represents a normalized heat current [cf. 
Appendix C Eq. (C.21b)], while the Boltzmann value (in first Enskog 
approximation) of the sound damping F 0 is determined by ~28,8(0 ), where ~08 
represents a normalized longitudinal current. The Boltzmann value (in first 
Enskog approximation) for the self-diffusion coefficient D O is obtained 
from ~2,2(ka) for k ~ m. For high densities, however, there are additional 
contributions to the transport coefficients and therefore to the hydrody- 
namic eigenvalues, due to collisional transfer of momentum and energy. 
We want to incorporate also these contributions and obtain the transport 
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coefficients as proper combinations of kinetic and collisional transfer 
contributions. These collisional transfer contributions arise from f~jj(ka) 
with j = 2, 3,4 and from the off-diagonal matrix elements az,s, a3,7, and 
f24, 6 for small k. With the form (3.6) with M = 5 and only four functions at 
our disposal it is not possible to get all the hydrodynamical eigenvalues 
correctly. We have made the following choice: 

h+ (k) = aT,7(ko ) 

h_ (k) = ~6,6(k0) 

g +  ( k )  = 

g_ (k) = ~2,,6(ko ) 

(3.7a) 

(3.7b) 

(3.7c) 

(3.7d) 

implying that 29 matrix elements of A k and A (M) are now the same: viz., 
those for j ,  l < 5 ; j  = l - -  6 ; j  = l = 7 ; j  = 3, l = 7; a n d j  = 4 and l =  6. We 
note that h+ (k) is real, while g_+ (k) is purely imaginary. 

With this choice, it is shown in Appendix B that Eqs. (3.1), (3.6), and 
(3.7) give the Enskog values for the kinematic viscosity PE, thermal diffusiv- 
ity DrE, and self-diffusion coefficient D E (in first Enskog approximation) 
for all densities. It is not possible with M = 5 and the choices (3.7) to obtain 
the correct Enskog value for the sound absorption F E, although the actual 
value obtained for F in our approximation is not too far from F E. To 
obtain F in the same approximation as the other hydrodynamic eigenvalue 
p and D r, one would have to choose M = 6. While the hydrodynamic 
eigenvalues, i.e., the transport coefficients, are obtained approximately 
from (3.6), (3.7) with M = 5, the thermodynamic quantities and the speed 
of sound c are the same as for L(k). Also the hydrodynamic eigenfunctions 
to lowest order in k, as given in Eqs. (2.39)-(2.49) in Section 2 are obtained 
correctly. 

Now that we have defined the approximations to L(k) and LS(k) that 
we have used in our explicit calculations, we will sketch how approximate 
collective modes to L(k) and LS(k) can be found using the Eqs. (3.1), (3.6) 
with M = 5 and (3.7). For brevity we will call the approximate operators 
L(k) and LS(k) defined this way L(k) and E~(k), respectively. We first 
discuss the collective modes of /~(k). For the inversion of the operator 
[z - /~(k) ]  to be carried out below, it is convenient to write L(k) in the form 

L(k)  = I f+  (k,v) + F+(K)]P+ + I f _  (k,v) + F_(K)]P_ (3.8) 

where f •  (k, v) are functions of k and v defined by 

f•  (k, v) = - ik.  v + nxh+ - (k) + nx g+_ (k)rP2(v) 

[ ik l~2(v ) (3.9) =nxh+(k)+ nXgx(k)  (flrn),/2 
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while F+ (k) are finite matrix operators given by 
3 3 

F+ (k) = ~ ~ Icpj)Fjt(k)(qh] (3.10a) 
j= l t= l  

F _ ( k ) =  E [cPj)F,(k)(cPjl (3.10b) 
j = 4 , 5  

with matrix elements given by 

Ffl ( k ) = nxf~j,z( ko) - nx g+ (k)(~jcP299t) 

i~-~ [ kC(k) ] 
-nxh+(k)aj,,+ ~ jl(ka)+ - -  ~j, lal,2 (3.11a) 

4qra2X 
F,(k) = n x a 4 , 4 ( k o  ) - nxh_ (k) (3.11b) 

We remark that f+_ (k, v) and F~ (k) only depend on k = [k] because of the 
particular choice of our coordinate system, f_+ (k, v) incorporates the contri- 
butions of h+_ (k)P+ and g~_ (k)r in (3.6) and of the free-streaming 
term - i k - v  in (3.1), which can also be written, with Eq. (2.25), as 
ik .v  = ikep2(v)/(flrn) 1/2. The matrix operators F+ (k) incorporate the con- 
tributions of the first term in Eq. (3.6) as well as the terms proportional to 
PM~P2PMP+_, PMP+_ in this equation and the operator A k in (3.1). With Eq. 
(3.8), the operator [z - L(k)]-1 can be written as the sum of two operators 
that can each independently be inverted 

1 _ 1 p+  + 1 
z -  L(k) z - f + ( k , v ) -  F+(k) z - f _ ( k , v ) -  F_(k) P- 

(3.12) 

where we used that the operators P+_ and F+_ all commute with each other 
and t h a t P + f •  =P_f+(k)P+=O. 

In Appendix D the inversion of [z-/~,(k)] based on Eq. (3.12) is 
carried out explicitly, resulting in the equation 

1 _ 1 [ 1 +  ~,3 
z - L ( k )  z - f+(k ,v )  ~ Jd ='1 [ ( ~f ( ~ ( ~'~ ] , c p j ) L F , k ,  t l - A , . k , z , F , k , j - ' j y  ` 

1 } p +  
z - f+ (k, v) 

1 I + - f _ ( k , v )  1+ ~,, [Wj)[F.(k)(1-A,(k,z)F~(k))-'] 
Z j=4,5 

' ) e (3.13) 
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Here F(k) is a 3 • 3 matrix with matrix elements Fjl(k ) given by Eq. 
(3.11a), A(k,z) is a 3 x 3 matrix with matrix elements A/(k,z)  given by 
( j , l=  1,2,3) 

( 1 ) 
Aj,(k,z)= ~ j z _ / + ( k , v )  ~' 

~j(v)~,(v) 

= 3 av~(v) r  z + ik-v - nxh+ (k)  - n xg +  (k)(Bm)'/2v �9 ~ 

(3.14) 
[ ]jr is the fl-matrix element of the matrix [ ], F~(k) is defined by Eq. 
(3.1 lb), and A~(k,z) by 

{ 1 ) 
A~(k,z) = cp4 z - f _ ( k , v )  ep4 

=fdv~, (v)  
z + i k - v -  nxh_ (k) - nxg_ (k)(flm)'/2v �9 f 

(3.15) 

where the unit vector/~ = k /k .  In Appendix D it is also shown that the 
functions Ajl(k, z)(j, l = 1,2, 3) and A~(k, z) can all be expressed in terms of 
the plasma dispersion function Z(z), which for Imz > 0 is defined as (2'|6) 

_ l_l_ f ~  dx e-x2 (3.16) 
z ( ~ ) =  ~ ~ z - x  

As discussed in Section 2, the collective modes of/~(k) are associated with 
those values of z for which poles appear on the right-hand side of Eq. (3.13) 
that go to zero for k--> 0. In order to determine these poles we remark the 
following. For a given value of k, all functions Ajx(k, z) in (3.14) and the 
function [z - f+ (k, v)]- 1 are analytic in the complex z plane for values of z 
for which Rez  > nxh§ (k). This follows from Eqs. (3.9) and (3.14), using 
that g+ (k) is a purely imaginary function of k. Also, it follows from the 
explicit form for h+ (k) given by Eq. (3.7a) and Appendix A, that h+ (k) is 
always smaller than its value for k = 0, h+ (0) = ( -8 /15) (n to) -1  and oscil- 
lates to a constant value for k ~ o o ,  h + ( o o ) =  (-59/60)(nto) -1. There- 
fore, the functions Ajl(k,z ) and [z - f+  (k, v)] -1 in (3.13) are analytic in 
a region of the complex plane to the right of Rez  = nxh+ (k), which in- 
cludes the origin for all k. Similarly, the functions A~(k,z) in (3.15) and 
[z - f _  (k, v)]- 1 are analytic for all z for which Rez  > nxh_ (k), a region of 
the complex plane that includes the origin for all k, as follows from Eq. 
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(3.7b) and Appendix A. Hence, the collective modes are associated with 
values of z for which the matrix ] - A(k, z)F(k) and the function 1 - A~(k, 
z)F,(k) cannot be inverted. Now the inverse of the matrix 1 - AF is given 
by 

[1 - A(k,z)F(k)] -1 -  1 H(k,z) (3.17) 
D(k,z) 

where the matrix H(k,z) is the transpose of the matrix of minors of the 
matrix 1 - AF and 

D(k,z) -- det[1 - A(k,z)F(k)l (3.18) 

Since the functions in H(k, z) are analytic for Re z > nxh § (k), the matrix 
1 - AF cannot be inverted for those values of z for which the determinant 
D(k,z) vanishes. Similarly, the function D~(k,z) = 1 - A~(k,z)F~(k) can- 
not be inverted for those values of z for which this function vanishes. 

Thus, the (extended) heat mode eigenvalue zn(k ) and the (extended) 
sound mode eigenvalues z + (k) are determined by the implicit equations 

D(k, zH(k)) = 0; zu(k ) real (3.19a) 

D(k,z+_ (k)) = 0; z+_ (k) c.c. (3.19b) 

while the (extended) shear mode eigenvalue z~(k) is determined by the 
equation 

D~ (k, z~(k)) = 0 (3.20) 

In order to find the eigenfunctions corresponding to these eigenvalues, one 
substitutes (3.13) into Eq. (2.57) with L(k) replaced by/~(k). Carrying out 
the integration around the five (extended) hydrodynamic poles in the 
complex z plane yields then 

e E(k)t ~ ~ eZJ(k)t 1 
j=14,+ D'(k, zj(k))[zj(k)-  f+  (k,v)l  

3 
1 

• ~ 1 [eP'~EF(k)H(k'zj(k))]t~(qgml zj(k) - f+ (k,v) P+ 

+ ~ ezAk), 1 F~(k) 
j=4,5 z . ( k ) -  f_ (k,v) [~j~ D'(k,z.(k)) 

1 P + . . .  ( 3 . 2 1 )  
• (epj[ z,(k) - f _  (k,v) 

In (3.21) the remaining terms, indicated by . . . .  can be represented by 
integrals over z along the lines Re z = nxh+ - (k), but are not written down 
explicitly here; D'(k,z)= dD(k,z)/dz and D'(k,z)= dD,(k,z)/dz. The 
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eigenfunctions of the collective modes can be determined as follows. The 
shear mode eigenfunctions can be read off directly from the terms j = 4 
and j = 5 in Eq. (3.21). The heat and sound mode eigenfunctions are 
contained in the first term on the right-hand side of Eq. (3.21). Explicit 
expressions for these eigenfunctions can be obtained by diagonalizing the 
matrix F(k)H(k, zj(k)) for j = H and for j = _ .  However, since the time 
correlation functions in which we are interested, like F(k,t), can be 
computed without explicit knowledge of the collective eigenfunctions, we 
will not give these eigenfunctions here. 

We remark that /~(k) has been constructed in such a way that it 
satisfies the five basic properties mentioned in Section 2. Consequently, the 
eigenvalues and eigenfunctions of the collective modes found here must 
satisfy these conditions. 

We now consider eigenvalues and eigenfunctions of the operator LS(k) 
that approximates L'(k) in a similar fashion as the operator L(k) approxi- 
mates L(k). In this case we are not only interested in the collective mode, 
i.e., the diffusion mode, but in general in the modes that correspond to the 
five collective modes of/S(k), which must be present in/~'(k) in view of the 
relation E ( k ) +  L'(k) for ko >> 1. Because of Eq. (3.3), the operator/~S(k) 
can be constructed in a very similar way as the operator L(k). We only 
indicate the main steps. Similarly to Eq. (3.8), LS(k) can be written in the 
form 

/TS(k) = [ f +  (k,v) + F+]P+ +[f*_ (k,v) + F~_]P (3.22) 

where the functions f~ (k, v) are given by 

f~ (k,v) = - ik- v + nxh+ ( ~ )  (3.23) 

and the matrix operators F~ by 

3 3 

F+ = ~ ~ [rpj>Fj,(~)<rpl I 
j = l  / = 1  

F s = Ir+SF,( )%l 
j = 4 , 5  

where, with Eq. (3.11) 

(3.24a) 

(3.24b) 

F/ , (~)  = k--,~lim Fjz(k) = nxs - nxh + (~)dj, (3.25a) 

F , ( ~ )  = lim F,(k) = nxs - nxh_ ( ~ )  (3.25b) 
k---> c~ 

since g+ , j l  and kC(k) vanish for k ~  ~ .  
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An expression for the operator [ z -  ff, S(k)] - l  
similar in form to Eq. (3.13) for [z - L(k)]-l :  

can then be obtained 

1 -- 1 { 3 
z - L'(k) z - f +  (k,v) 1 + j,,=12 I~}[FS{ 1 - A ' (k , z )W}- l ] j  l 

1 ) 
x@, l z_ f f+(k ,v  ) P+ 

- A~ (k,z)F~(oo)] + - f ! ( k , v )  1 + E Icpj}F.(~176 1 ' - '  
Z j = 4 , 5  

• @pjt z _ f l ( k ,  v) } P_ (3.26) 

Here W denotes a 3 x 3 matrix with elements Fj/(~ ) and A~(k,z) a 3 x 3 
matrix of functions Aft(k, z) defined by 

, ( 1 } (3.27a) Ag(k,z) = ~Jz - f+(k ,v )  ~` 

while 

A;(k,z) = ~04z - if_ (k,v) ~4 

which, like Ajt(k,z ) in (3.14) and A,(k,z) in (3.15) can be completely 
expressed in terms of the plasma dispersion function (3.16), as discussed in 
Appendix D. 

The modes we are interested in are associated with values of z for 
which the matrix 1 - A~(k,z)W and the function 1 - AS(k,z)F~(~) cannot 
be inverted. Writing 

[1 - AS(k,z)FS] -~-  1 H'(k,z) (3.28) 
D'(k,z) 

where HS(k,z) is the transpose of the matrix of minors of the matrix 
1 - A'F s and D~(k,z) is defined by 

D ~(k, z) = det[1 - AS(k, z)F s ] (3.29a) 

and defining similarly 

D~(k,z) = 1 - AS(k,z)F~(oo) (3.29b) 

the modes of interest are obtained for those values of z for which D~(k,z) 
and D~(k,z) vanish. The diffusion mode eigenvalue follows from the 
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equation 

D'(k ,  z;  (k)) = O, z; (k) real (3.30a) 

while there are two other solutions of the equation D~(k,z)= 0 

DS(k,z'+ (k)) = O, z~ (k) c.c. (3.30b) 

that are each others' complex conjugate. In addition there is a solution of 
the equation D[(k, z) = 0 

D[(k,z;(k))  = O, z;(k) real (3.31) 

that is real. 
Substitution of Eq. (3.26) into Eq. (2.58), with LS(k) replaced by LS(k), 

and integration around the four poles yields, similarly as before, 

c~ L'(k) t : E ezf(k)t 1 
j=D, + D:'(k, f f ( k ) ) [ f f ( k )  - f +  (k,v) ] 

3 
1 

X l,m=E 1 [%)[WHS(k'zf(k))]lm(q)m[ zj(k)  - f~_ (k,v) P+ 

+ ~ eZ~'(k), 1 F~,(oo) 
j:4,5 Z, ~ (k) - i f _  (k,v) I~PJ) D,"(k,z:" (k)) 

• (cpj] z /(k)  - I f  s (k, v) P -  + " ' "  (3.32) 

where the integral representation of the remaining terms is again omitted. 
From Eq. (3.32) one can obtain explicit expressions for five eigenfunc- 

tions of E~(k). Two eigenfunctions can be read off directly from the terms 
with j = 4 and j = 5 and belong to the same real eigenvatue z~(k). Since 
they are even in Vx, odd invy and vice versa, they appear as the analogs of 
the two shear modes of L(k) and they are indeed very similar to these 
modes for ka >> 1 as will be discussed in the next section. The first term in 
(3.32) contains the diffusion mode j = D and two modes j = ___ with 
complex conjugate eigenvalues. Explicit expressions for the eigenfunctions 
could be obtained by diagonalizing the matrix FSH~(z ~, k). We will not do 
so for the reason discussed below Eq. (3.21). We only note that, just as the 
heat mode and the sound mode, the eigenfunctions corresponding to z~ 
and z s are even in v x and in Vy. This follows from Eq. (3.32), since q~t and 
epm have this property for l, m = 1,2, 3. Therefore, since both z~(k) and 
z;4(k) are real, the heat mode would appear to tend to the self-diffusion 
mode for ko >> 1 and the sound modes to the modes of L '(k)  corresponding 
to the eigenvalues z~ (k). This is further discussed in the next section, w e  
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remark that the four modes corresponding to z~ (k) and z~(k) are all of a 
kinetic type, i.e., they all tend to a nonzero value - -~ t [  1 for k-~ 0, while 
the corresponding four eigenfunctions tend in this limit to linear combina- 
tions of v and v 2, which are not collisional invariants for the Lorentz- 
Enskog equation. These results follow directly from properties of the 
operator L~(0) = nxA s. 

Finally, we can compute explicitly on the basis of the results obtained 
in this section the functions F(k , t )  and F~(k, t) defined in Section 1 or 
rather, using Eqs. (2.1), (2.2), and (2.24) their Fourier transforms 

S (k, co) = S ( k ) R e  ico - E (k )  

and 

s 1 Re(epl 1- ) (3.33b) S e (k, co) = -~ ico - L ~ (k) ~l 

In fact we will compute Se(k ,  w) and S}(k ,  co) using the contributions of the 
collective modes alone as well as using the contributions of all modes: the 
collective modes and all other modes. In comparing the results of these two 
calculations, we can assess the importance of the collective modes in the 
calculation of Se(k,  co) and S~(k, co). 

The contribution of the collective modes alone to S(k,  co) leads to the 
expression 

_ % ( k )  
SE(k,  co) = l S ( k )  ~,  Re . j=,q, _+ tco - zj(k) (3.34) 

where 

Mj(k)  - 1 D ' (k ,  zj(k)) [H(k ' z j (k ) )A(k ' zy (k ) ) l l ,  ~ (3.35) 

as derived in Appendix D. We note that owing to their symmetry in v x and 
vy, the shear modes do not contribute to Se(k ,  co ). On the other hand an 
expression containing all contributions to SE(k, co ) can also be obtained 
and reads 

Se(k ,  co) = 1 S(k)Re 1 -~ D(k ,  ico) [H(k'ico)A(k'i~ ]',l (3.36) 

This is also derived in Appendix D. 
Comparing the expressions (3.34) and (3.36) for Se(k ,  co ) leads to the 

following. 
For k 7+ 0, the collective (i.e., hydrodynamic) modes are the dominant 

contributions to Se(k ,  co). This follows immediately from Eq. (3.33a), that 
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r is an eigenfunction of L(0), so that all contributions present in (3.36) but 
not in (3.34) tend to zero for k ~ 0  and that Mn(0)=  1 - 1 / y  and 
M_+ (0) = 1/2y, as discussed in Appendix D. Thus for small k the hydrody- 
namic modes determine the dynamical scattering function Se(k,~ ) and 
Eq. (3.34) reduces to the Landau-Placzek formula (1.4) given in Section 1, 
with the correct values for the thermodynamic properties such as c, y, and 
S(0) and approximate values DrE, u E, and F E for the hydrodynamic 
eigenvalues (transport coefficients) of a hard sphere fluid described by the 
generalized Enskog theory. The importance of the contributions of the 
collective modes to SE(k, ~o) for larger values of k is discussed in the next 
section. 

Similarly, the contributions of the diffusion mode and the kinetic 
modes corresponding to z~ (k) alone to S~:(k, ~o) give 

~S(k)  
S~(k ,w)= 1 ~] R e .  zf(k) (3.37) 

'27" j =  D ,  +_ lr - 

with 

1 [HS(k, zf(k))AS(k, zf(k))]l,1 (3.38) MjS(k)- DS,(k,z/(k)) 

while the contribution of all modes to S~(k, ~) is given by 

S~ (k, r = ~1 Re D~(k,i~)l [ HS(k,i~)A~(k, iW)]l,, (3.39) 

Again the relative importance of the contribution of the collective diffusion 
mode to S~(k, ~) will be discussed in the next section. 

4. RESULTS 

We have computed explicitly the extensions of the hydrodynamic 
eigenvalues z/4(k), z~(k), z+_ (k) as given by Eqs. (2.38), (2.45), and (2.42) to 
larger values of k on the basis of the kinetic model described in Section 3 
for two different densities. Also we have computed the extension of the 
self-diffusion eigenvalue z~ (k) given by Eq. (2.48) to larger values of k as 
well as the behavior of the three kinetic eigenvalues z~(k) and z s (k) 
introduced in Section 3. 

These eight eigenvalues were obtained as functions of k by solving 
Eqs. (3.19), (3.20), (3.30), and (3.31) numerically, using the 3-3 Pad6 
approximation of Ree and Hoover ~17) for the equation of state of the hard 
sphere fluid and the expression of Henderson and Grundke ~ is) for S(k). 

The various z(k) are plotted as a function of k for a typical low 
density (Vo/V = no3/v/2 = 0.055; V o = No3/~/-2 is the volume of close 
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packing) in Fig. 1 and for a typical high (liquid) density (1"Io/V = r to3/~ - 
= 0.625) in Fig. 2. We first discuss the low-density case, i.e., Fig. 1. 

(t) z ~ ( k )  is a smooth, monotonically decreasing function of k, behav- 
ing for small k as z ~ ( k )  = - DEk  2 and extending till a limiting value k~* of 
k, where Eq. (3.30a) no longer has a unique solution. Deviations of z ~ ( k )  
from - D e k  2 grow as large as 30% for k ~ kD, and are such that Iz~(k)[ 
< D e k  2 for all 0 < k < k~*. Thus the diffusion mode exhibits a softening 
with increasing k when compared to its hydrodynamic behavior, i.e., the 
decay of the diffusion mode for large k tends to be slower than predicted 
by the self-diffusion equation. 

(2) z~(k)  and the real part of z s (k), as obtained from Eqs. (3.31) and 
(3.30b), respectively, are also smooth monotonically decreasing functions of 
k, extending till limiting values k F and k~*, respectively, beyond which Eqs. 

1.0 

0.5 

-0.5 

- ] . 0  

Z~ (k )  t E 

~ . . . . .  I I I , I  I I I '  ~ 0.5 ko" ----> 

0 0.5 ] .0 1.5 k l  E` 

Fig. 1. Eigenvalues z i of /~(k) (drawn lines) and eigenvalues z 7 of LS(k) (dotted lines) as 
functions of ko and kl e for a hard sphere fluid at a typical low density V o / V  = 0.055. t~ 
denotes the mean  free time between collisions and l E = 2.560 the mean  free path. i stands for 
heat  ( - -H) ,  shear (--u) ,  sound (---L-_), diffusion (---D,) shearlike (---u), and soundlike (---+_) 
modes. Positive values refer to the absolute value of the imaginary parts of zi(k ) and of zi(k) ,  
negative values refer to real parts. 
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Fig. 2. Eigenvalues of L(k) (drawn lines) and LS(k) (dotted lines) as functions of ka and kt  E 
for a hard sphere fluid at a density V o / V  = 0.625, typical for liquids. The notation is as in Fig. 
1, l s = 0.0520 and  the results for zS(k)tE on the scale kl  E are the same as in Fig. 1. 

(3.31) and (3.30b) no longer have unique solutions. For small k, the 
imaginary part of z ~ (k) behaves like a linear function of k, while the real 
parts of z s (k) and zS(k) tend to - ( 2 / 3 ) t ~  I for k-->0. 

The limiting values kff, k s*, and k~* are determined as follows. The 
functions occurring in D~(k,z)  and D~(k,z) are only well-defined analytic 
functions of z for values of z to the right of Rez = nxh+ (oo) = - (59 /60)  
@-t and R e z =  n x h _ ( ~ ) = - ( 1 6 / 1 5 ) t 7 1 ,  respectively, in the complex 
plane. However, for that value of k for which a solution i f ( k )  ( j  = D, v, +_ ) 
of the equations (3.31) and (3.30b) reaches these limiting values, the 
solution of these equations can no longer be obtained. Thus the limit wave 
vectors kjS*(j = D, v, + ) are determined from the implicit equations 

s s *  z) (kj ) = nxh + (oo1 = - ( 5 9 / 6 0 ) t ; ;  

for j = D, + and 

s s *  G ( k v )  = n x h -  (oo) = - (16 /15 ) t ; '  

(4.1 a) 

(4.1b) 
f o r  j = P. 
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While one can determine k s* = 0.8/e -1 analytically, k~* = 1.67le - l  and 
k s* = 0.585/e - l  were obtained numerically. We remark that if the z/ are 
measured in units t~ l and the wave vectors k in units le-1, the z~ become 
universal functions of k, independent of the density. This follows directly 
from the eigenvalue equation (2.33). This implies that the values of k S 
given above are valid for all densities (cf. Fig. 3) and can also be used in 
Fig. 2. 

(3) The real parts of zj(k) (j  = H, +, p) are all smooth monotonically 
decreasing functions of k, while Imz+ (k) is monotonically increasing, 
extending to limiting values k~, k* ,  and k*, respectively, where Eqs. (3.19) 
and (3.20) no longer have unique solutions. For small k they behave as 
Z H = - -DTE k2, Z+ = + - i c k -  Fek 2 and z ~ -  - P E  k2, respectively. Devia- 
tions from this behavior for larger k typically do not exceed 30% and are 
such that Iz•(k)l < Drek z, [Rez+ (k)l < FEk 2 and [zAk)l < vek ~. Thus 
also these modes exhibit a softening for large k and decay slower than 

~E/o" ..... 

a.o / \ - k~*k . . . .  
Q / \ I 

. . . . . .  \ . . . .  

1 . 5 -  ~ H 

1 .0  

. . . . . . . .  ~ ~ '  
\ 

\ 
. . . . . . . . .  ":k- . . . . . . . . . . . . . . . . . . . . .  + 

05 ' x  

0 0'.] 0'.~- OI.~ 0.'~ 0.5 0.6 
vo/v----~ 

Fig. 3. Limit wave vectors k* ( - - )  and k/~* (---) up to which the modes i = H,  t, of /~(k)  and 
i = D, v, + of ff,~(k) exist, as functions of the density. The mean  free path  in units a, lE/o, 
(-.-)  as a funct ion of the density is shown in order  to facilitate the conversion of the o to the l E 

scale. 
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predicted by the hydrodynamical  equations. For  larger values of k, 
lira z• (k)] continues almost linearly proportional to ck, which agrees with a 
similar result obtained by Foch and Ford (2) on the basis of the linearized 
inhomogeneous Boltzmann equation. 

The limit or cutoff wave vectors kj*(j = H, + ,  v) are determined in the 
same way as the kj s* by the implicit equations 

zj(kj*) = nxh + (kj*) (4.2a) 

for j = H, + and 

z~(k*) = nxh_ (k*) (4.2b) 

for j = v. 
The results of a numerical solution of these equations for k 7 as a 

function of the density are plotted in Fig. 3. For the low density used in 
Fig. 1, i.e., Vo/V=O.055 one finds k/~= 1.081i j, k * =  1.01l~ - l ,  and 
k* = 1.501e - l .  This means that k* < k~/< k* so that the shear mode 
extends much further than the heat mode. We remark that for this density 
l e = 2.58a, so that all the collective modes have disappeared long before k 
has reached the value ko ~-" 1. Therefore, the relations between the eigenval- 
ues zj(k) ( j  = H, _ ,  v) and zf(k)  ( j  = D, +, ~) discussed under point 5 in 
Section 2 cannot be observed here. 

We now turn to a discussion of Fig. 2. Here zf(k)  and zj(k) are plotted 
as a function of k for a density V o / V  = 0.625, where l E = 0.0520 or a = 
19.32l e, so that the value ko = 1 is reached for k = 0.052le -~. 

(1) As noted before, the results for z:(k)t  E ( j  = D, +_, v) as a function 
of kl e are the same as in the low-density case. 

(2) The eigenvalues zj(k) (j  = H, +_, v) behave as predicted by hydro- 
dynamics for small k, i.e., ko < 1. However, for larger values of k they are 
not monotonic functions of k, but instead show a complicated behavior 
that we will discuss now. 

(a) The heat mode eigenvalue zi4(k ) softens very appreciably, almost 
vanishes at ko --~ 7 (i.e., for wavelengths 2~ = 2~r/k ~ o ) ,  and then oscillates 
around the self-diffusion eigenvalue z~(k) up until a limiting value k~, 
= 31.3o -I  of k, which is very close to the limiting value k~* = 1.67le -1 
= 32.2o-  1. 

(b) The shear mode eigenvalue z,(k) softens appreciably for ko>~ 1 
and follows the eigenvalue z~(k) up to the limiting k value k* = 15.40o-1, 
which is close to k~* = 0.81e -1 = 15.46o -1. 

(c) The sound mode eigenvalues z_+ (k) are complex and each other's 
complex conjugate except for a region 5.5ko <~ 7.5 around ko ~ 7, where 
both are real. For these values of k the (extended) sound modes are two 
different strongly damped nonpropagating modes, since Im z_+ (k) = 0 here. 
For values of k not in this region, the sound modes propagate, although for 



250 de Schepper and Cohen 

ko >~ 1 the propagation is very different from that predicted by hydrody- 
namics, where Imz• (k) -- _+ ek. The real and the imaginary parts of z_+ (k) 
oscillate around the real and imaginary parts of z~ (k), with oscillations 
much larger and more complicated than those of zH(k ) around z~(k). 
However, the cutoff vectors for the two modes are close again: k * - -  
I2.4a -I is close to kS_+* =0.5851e - l =  ll .3a -l .  The limiting values of k 
satisfy in this case a different inequality than at low densities, viz., k* < k* 
< k~. We remark that the limiting value kh of the heat mode is much 
larger than that of the other modes. The possible consequence of this for 
the negative piece of the velocity autocorrelation function has been pointed 
out elsewhere. (Jg) 

In addition to the eigenvalues of the collective modes we have also 
computed the dynamical structure function SE(k, co) and S}(k, ~o) as given 
by Eqs. (3.36) and (3.39) as well as by Eqs. (3.34) and (3.37), that contain 
the contributions of the collective modes alone. The latter involves the 
calculation of Mj(k) and Mr(k) from Eqs. (3.35) and (3.38), respectively. 
As remarked before, explicit expressions for the eigenfunctions are not 
needed for the calculation of Mj(k) and Mr(k). 

(1) The results for M,(k)  and M~(k) are shown in Fig. 4 for the 
density Vo/V = 0.625. M;(k) is a smooth monotonically increasing func- 
tion of k, extending from its value M~(0)= 1 for k = 0 to a maximum 
value of " '* MD(ko)=  1.7 for kff =31.3o -I The behavior of M~l(k ) with 
respect to M~(k) is similar to that of zH(k) with respect to z~(k): for 
0 < ko <<. 1, MH(k) is close to its hydrodynamic value 34,(0 ) = 1 - 1/7 
= 0.63 and M~l(k) oscillates for ko ~> 7 around MT)(k). This is so because, 
as for the eigenvalues, the heat mode eigenfunctions approach the self- 
diffusion eigenfunction for ka >> 1. 

(2) With Zl~(k ) and M~t(k) the contribution S(EH)(k,~o) of the heat 
mode alone to Se(k, co) can be computed, using 

S(eH)(k,~o ) = 1S(k)Mlt(k) ~o 2 +- zH(k)[ z .  (k) ]2 (4.3) 

Similarly, with z~(k) and M~(k) the contribution S} (D) (k, ~o) of the self- 
diffusion mode to S~(k, o~) can be obtained, using 

s~(D)(k'w) = I_MD(k). - z ; ( k )  (4.4) 
,o2 + [ z ; ( k ) ]  2 

(3) We now compare SE(k,o~) with S(EH)(k,~o), where Se(k,~o ) is 
obtained numerically from Eq. (3.34) and Se (H) (k, ~0) from Eq. (4.3). For k 
values 0 ~< ko~<l, SE(k,~o) is described by S}Z4)(k,~o) as a central or 
Rayleigh-like line and the contributions of the two sound modes or 
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Fig. 4. M,(k) ( - - )  and MD(k ) (---),, defined in the Eqs. (3.35) and (3.38), respectively, as 
functions of ko for hard spheres at a density Vo/V = 0.625. 

Brillouin-like lines, that can be obtained from similar formulas [cf. Eqs. 
(3.34) and (3.35)]. The sound mode contributions disappear as distinguish- 
able lines in Se(k, ~o) for ka "~ 0.5. For k values ka ~> 1, SE(k, o~) has the 
same form as Se (m (k, ~o), i.e., of one line centered around 0~ = 0. We have 
compared the values Se(k,O) and S(eH)(k,O) for ~0 = 0 as well as the 
half-width r ) and toh(~/)(k) of the two lines where SE(k,%(k))= (1/2) 
Se(k,O ) and S(E~l)(k,~O(h~l)(k))= (1/2)S(En)(k,O). From Eq. (4.3) follows 
directly that 

S~")(k,O) = • S(k) M. (k )  (4.5) 

The highly pronounced oscillatory behavior of Se (u) (k, 0) as a function of k 
is due both to the oscillatory behavior of z , (k)  (cf. Fig. 2), MH(k ) (cf. Fig. 
4) and S(k) which enhance each other. 

(4) In Fig. 5, S(eU)(k,O)/S(k) and Se(k,O)/S(k ) are plotted, so that 
the influence of the oscillations of S(k) alone are suppressed. From Figs. 2 
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Fig. 5. SE(k, O)/S(k)t E (--) and S~M)(k, O)/S(k)te (---) as functions of ko for hard spheres 
at a density Vo/V = 0.625. The crosses (• represent S(k, O)/S(k)t E for liquid argon derived 
from coherent neutron scattering experiments of SkSld et al., using o = 3.46 A and t E = 0.084 
ps. Note that S}H)(k,O)/S(k)= Ml~(k)/~rzH(k), with MH(k ) and z~(k) plotted in Figs. 3 
and 2, respectively. 

and 4 it follows then that the still very oscillatory behavior  of S(e H) (k, 0)/ 
S(k) mainly reflects that  of the heat  mode  eigenvalue zH(k ), [s(eH)(k,O)/ 
S (k )~z  H(k)- 1], the p ronounced  max imum of s (H) (k ,  0 ) / S ( k )  occurr ing 
at ko = 7 as it does for zu(k ). We note that up to the limit wave vector k~ 
for the extended heat mode  the difference between SE(k, 0) and Se (H) (k, 0) 
does not  exceed a few percent so that SE(k,O ) is very well represented by 
S(E H) (k, 0) alone. We found no evidence for any singularity in the behavior  
of Se(k, 0) at k = k~, so that it appears that for k near k~ the contr ibution 
of the heat  mode  is smoothly taken over by other (noncollective) modes  of 
/~(k). 

(5) In  Fig. 6, the half width ~oh(k ) of S~I4)(k,w) is compared  to that  of 
SE(k, w). Again up to the limit wave vector k~/the half width of SE(k, ~) is 
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Fig. 6. Half-widths at half-height (o h (--) of SE(k,w ) and wh ('q) (---) of S~;~(k,w) as 
functions of kcr for hard spheres and half-width at half-height of S(k, co) for liquid argon (• 
Vo/V, ~, and tr are as in Fig. 5. Note that -~h (H) equals zu(k ) plotted in Fig. 2. 

close to that of s(H)(k,w), i.e., essentially determined by the heat mode 
alone, since c0(t4)(k)=--ZH(k).  We note that O~h(k ) is continuous at 
k -  k~, but will be determined exclusively by noncollective modes for 
k > k~/. Thus we conclude that the heat mode alone dominates the coher- 
ent scattering function SE(k, o~) for values of k such that 1 ~< ka ~ k~4a. 

(6) We remark that for any value of k v ~ 0, the heat mode will not 
describe correctly the behavior of SE(k, ~) for large values of c0 since the 
asymptotic behavior of S(H)(k, o~),~ l/c02 is essentially different from that 
of SE(k,w)~l/w4.  (2~ This is not due to the model kinetic equation used 
here but to the representation of SE(k,~0) by contributions of a finite 
number of poles, i.e., by Lorentzian lines alone. We found that S (H) (k, o~) 
gives for ka ~> 1 a correct representation of SE(k, o~) only for values of ~ up 
to Iw[ ~ 3zn(k), at which deviations have grown as large as 10%. 

(7) A comparison of S~(k, oo) obtained numerically from Eq. (3.37) 
and of S}(~ from Eq. (4.4) leads to similar conclusions. Thus the 
self-diffusion mode contribution to S}(k,w), S}(D)(k,~o) alone, dominates 
the incoherent scattering S}(k,~o) for all k up to the limit wave vector 
k = k~ and for Iwl ~3ZD(k ). The maximum value S}(k,O) at ~0 = 0 is well 
described by 

s~(D)(k,O)_ 1 MD(k) (4.6) 

I 
as shown in Fig. 7. The line width w~(k) of S}(k, oo), defined by 
S}(k,o~(k)) = (1/2)S}(k,O) is well de: ribed by the line width w~(D)(k) 
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Fig. 7. S]r(k,O)/t e ( - - )  and S}(~ (---) as functions of ko for hard spheres. The 
crosses (x) represent SS(k, 0)/t E for liquid argon derived from incoherent neutron scattering 
experiments of SkSld et al. Vo/V, o, and t E are as in Fig. 5. Note that S~:(D)(k, O) = - M o ( k  ) 
/~rz]9(k ) with Mo(k ) and z~(k) plotted in Figs. 3 and 2, respectively. 

of S}(D)(k,o~) defined by S~(~  (1/2)S~(D)(k,O),  as shown 
in Fig. 8. Since deviations of ~0~(D)(k) f rom ~0~(k) are smal l - - in  fact  of the 
same order as described for the heat  m o d e - - t h e  half width of S~(k ,  o~) is 
essentially determined by the self-diffusion mode  alone, since ~o~(k)= 
- z ; ) ( k ) .  This implies that the "macroscopic"  self-diffusion law as ex- 
pressed here by zD(k  ) = - D k  2 and  M e ( k  ) = 1 ex tends - -a t  least in the 
generalized Enskog theory- -wi thou t  major  modificat ions to wavelengths as 
small as a fraction of the size of  the molecules, 

5. DISCUSSION 

In  this section we want  to make a number  of comments  on the results 
obtained in this paper. 
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Fig. 8. Half-width at half-height ~o~ ( - - )  of S~.(k, ~) and w,((D) (---) of s~(D)(k, w) as 
functions of ka for hard spheres and half-width at half-height of SS(k, ~) for liquid Ar ( •  
Vo/V, a, and t e are as in Fig. 5. Note that -~0,~ (D) equals z~(k) plotted in Fig. 2. 

(1) The method used here to calculate the contributions of all modes 
to the scattering functions S(k, to) and SS(k, to) on the basis of the general- 
ized Enskog theory [of. Eqs. (3.36) and (3.39)] is similar to that used in the 
work of Furtado, Mazenko, and Yip. (20 However, since these authors 
introduced a wave-vector-dependent hard sphere diameter the physical 
significance of which is unclear, a direct comparison of our and their results 
cannot be made. 

(2) As discussed in Section 4 and in Appendix C below Eq. (C.29), the 
operator L(k) given by Eqs. (3.8)-(3.11) yields a larger value of the sound 
damping coefficient than that computed from L(k). As a consequence the 
Brillouin lines in S(k, to) calculated with L(k) are lower and broader than 
those calculated with L(k) [cf. Eq. (1.4)]. Therefore, for the region 0 ~< ka 
~< 1, where the Brillouin lines in S(k, to) are distinguishable, we expect the 
displacement (+ ck) but not the shape of the Brillouin lines to be the same 
in the two theories. This makes a comparison of our model for 0 ~< ko ~< 1 
and low densities with experiment not meaningful. However, since 7 
increases and DTE/F E decreases with increasing density, the Brillouin lines 
in S(k, to) are less important for higher densities [cf. Eq. (1.4)]. Therefore, in 
that case a comparison can be made and we restrict our discussion mainly 
to high densities and to ka ~ 1. Results for a more elaborate model for 
L(k), containing the correct value of F e [cf. the discussion below Eq. (3.7)] 
will be published elsewhere. There, also a comparison with low-density 
experimental scattering data (1~ will be made. 
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(3) It is clearly interesting to compare our theoretical results with 
computer data for hard sphere fluids. From the work of Yip, Alley, and 
Alder (8'24) it appears that our approximation L(k) for the Enskog operator 
L(k), based on Eqs. (3.6) and (3.7) with M = 5, is a good one for high 
densities and ko >~ 1. For, these authors calculated the scattering functions 
S(k, oo) and SS(k,o~) using expressions for A(k M) with increasingly larger 
values of M /> 5 and found no significant changes when M increased 
beyond M = 5. Also, from their calculations it appears that the generalized 
Enskog theory based on the operator L(k) provides a reasonable descrip- 
tion of the properties of a real hard sphere fluid. Transport coefficients 
such as vE and D-rE obtained on the basis of the generalized Enskog theory 
deviate for liquid densities typically of the order of 30% from those 
obtained from computer results for a hard sphere fluid. This might also 
indicate the order of magnitude of deviations between theory and computer 
calculations that can be expected in the hydrodynamical regime 0 < ko 
~< 1. Comparisons made by Yip, Alley, and Alder do not indicate any 
increase of these deviations for larger values of k. At present we do not 
have sufficient computer data at our disposal to make a meaningful 
comparison of our theoretical results for the collective modes of a hard 
sphere fluid with the data of Yip, Alley, and Alder. It is, therefore, difficult 
to assess whether the heat and diffusion modes play the same dominant 
roles in the dynamical structure factors of a hard sphere fluid as they do in 
the generalized Enskog theory. 

(4) However, we can compare our results for SE(k, co) and S}(k,~o) 
with experimental data for liquid argon. (2s/ For that, an adaptation of the 
hard sphere model to argon has to be made by an appropriate choice of the 
diameter o of the hard spheres. This can for instance be done by comparing 
the structure factors S(k) for both liquids. O) A comparison of the theoreti- 
cal curves for S(IJ)(k,O) and %(~/)(k) with the S(k,O) and %(k) of liquid 
Ar, respectively, is made in Fig. 5 and 6 for ka >~ 1. As will be discussed 
below, sound modes are unimportant in this region. We feel that the 
theoretical and experimental curves for S(k,~o) for argon are sufficiently 
close to surmise that a collective heat mode is also present in argon and 
that it dominates its coherent neutron scattering for not too large values of 
~o. In fact, from the relation %(k) = - z~(k) information about the behav- 
ior of the (extended) heat mode in Ar as a function of k can be directly 
deduced. 

The behavior of Z~l(k ) shown in Fig. 2 and deduced from the general- 
ized Enskog theory explains in particular the phenomenon of the De 
Gennes narrowing, (26) i.e., the narrowing of the central line in S(k, o~) for 
wavelengths X ~ o (i.e., ka ~ 7). Similar results for liquid rubidium have 
been discussed in a previous publication. (9) 
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As shown in Figs. 7 and 8, the Enskog theory describes also the overall 
behavior of the experimental values of S~(k,O) and w~(k) for liquid 
argon (22~ as functions of k, so that the self-diffusion mode seems to 
dominate the incoherent neutron scattering function SS(k, w) of Ar. How- 
ever, systematic deviations occur between theory and experiment which are 
of a wavelike form reminiscent of the behavior of the heat mode (cf. Fig. 2), 
which suggests an influence of the heat mode on S~(k, w). 

In the Enskog theory only single collective modes are taken into 
account and there is no heat mode contribution to S'(k, w). Therefore, we 
conjecture that corrections to the Enskog theory due to mode coupling 
effects (6'7) which contain pairs of modes--in particular a heat mode cou- 
pled to a diffusion mode--might improve the agreement between theory 
and experiment. This will be investigated in a future publication. 

(5) On the basis of our theory the (extended) sound modes will 
contribute to SE(k, w) up to the limiting wave vector k* --- 11.3a - 1 (cf. Fig. 
2). However, the visibility of the sound mode contributions in Se.(k, ~) 
depends strongly on k. For 0 < k ~< 0.5o-1 these contributions manifest 
themselves as distinct (Brillouin-like) lines, for 0 . 5 o - ~ <  k~< o - l  as flat 
wings in SF.(k, ~), while for k ~> o - 1 they rapidly disappear. 

Computer simulations suggest that for liquid argon Brillouin lines in 
S(k, w) are visible for values of k such that k ~< o -  ~.cz7) So far they have 
not been observed in neutron scattering experiments, but they have been 
seen in light scattering experiments up to relatively large values of k. ~2s) 
Since the thermodynamic and transport properties are appreciably different 
for a hard sphere (or Enskog) fluid and a real fluid like Ar, a quantitative 
prediction of the value of k below which two sound modes will be 
distinguishable in the spectrum is not possible. Qualitatively, the occurrence 
of sound modes in the "initial" neutron scattering regime should be a 
general phenomenon. 

(6) From the above follows in our view that for not too large values of 
k and ~0 neutron scattering of fluids is just like light scattering, i.e., it can be 
understood on the basis of a Landau-Placzek-like formula, where the 
thermodynamic quantities are replaced by S(k) and Mj(k) [or MjS(k)] and 
the hydrodynamic eigenvalues (or the transport coefficients) by the ex- 
tended hydrodynamic eigenvalues [cf. Eqs. (1.4), (3.34), and (3.37)]. 

(7) The disappearance of the two sound modes as propagating modes 
and the bifurcation of the sound damping at high density (I1o/V = 0.625) 
was also seen by Foch and Ford using the Navier-Stokes equations for a 
low density gas at large values of k. This was the more surprising since their 
kinetic model, like ours, did not show any such behavior at these low 
densities. Whether this is a fluke of the Navier-Stokes equations or the 
kinetic models used is not clear at present. 
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(8) That all collective modes disappear for all densities when kt e ~ 1 
(cf. Fig. 3) and that for high densities these modes change their behavior 
drastically when ko ~ 7 (i.e., X ~ o) can physically be understood as fol- 
lows. There are three lengths in the problem: le, o, and the wavelength X, 
characteristic for a small disturbance in the fluid. For low densities a << I e 
(cf. Fig. 3) and as long as X > le, at least some collisions will take place 
between the many particles in X, before the disturbance has decayed to 
zero, since the decay time [zj(k)]-1 > tE" Thus, the local number, momen- 
tum, and energy density are approximately conserved and an approximate 
local equilibrium obtains. As a consequence, the behavior of the distur- 
bance can be described in terms of hydrodynamic modes. For high densi- 
ties l E << o, but as long as X is such that X > ~ >> l E, many particles are 
included in a wavelength and the local number, momentum, and energy 
density will still be approximately conserved. Therefore, the collective 
modes will again exhibit typical hydrodynamical, i.e., Landau-Placzek-like, 
behavior. However, when X ~ o essentially only a single particle is included 
in a wavelength and only the local number density will be conserved. Then 
the extended heat mode degenerates into a self-diffusion-like mode and the 
evolution of a small disturbance will be described by a self-diffusion-like 
mode alone. Now the coefficient of self-diffusion D << D r because D is a 
transport coefficient that does not contain any collisional transfer contribu- 
tions present in D r and which dominate D r for high densities. Therefore, 
when X ~ o, the heat mode will go from a behavior ~ - D r k  2 to one like 

- D k  2, i.e., it will soften very appreciably and continue as a self- 
diffusion-like mode till it ceases to exist when X ~ l E. This will be so since 
for X < l e no (approximate) conservation laws apply any more and one 
enters a regime in which free streaming begins to dominate. 

(9) The transversal current-current correlation function "r(k, t) is de- 
fined by 

-W-- ,5 "kiexp(-ik" rj) 2 v ' ( t ) ' k a e x p [ i k ' r ' ( t ) l  
= / = 1  0 

where l~j_ is a unit vector orthogonal to k. For small k, the behavior of 
T(k, t) is determined by linearized hydrodynamics, so that "r(k, t ) ~  e-"~zq 
In the generalized Enskog theory, this function is given by "rE(k,t)= 
{q%exp[L(k)t]rp4 ) and will behave for small k as "rE(k,t)= exp(-pek2t).  
One would expect that for larger values of k, "re(k, t) is dominated by the 
extended shear modes, just as Fe(k ,  t) is dominated by the extended heat 
mode. This would imply that information about the behavior of z~(k) could 
be obtained from the half width ~%(") of the Fourier transform of "rE(k, t) 
since ~%~(k)=-z~(k). Using this equality, computer data obtained for 
~-(k, t) at high densities indicate indeed a softening of the viscous mode 
consistent with the behavior of z~(k) in Fig. 2. (24) It would also be 
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interesting to verify whether the relation z,(k)~ z;(k) for ka>.7 holds, 
which is the analog of the relation Zz~(k)~-z~(k) for kay7 discussed 
above. 

(10) Wavelength and frequency-dependent transport coefficients, such 
as p(k, ~0), the wavelength-frequency-dependent kinematic viscosity, can be 
computed on the basis of the generalized Enskog theory in the same 
fashion as S(k,~o) here. It would be interesting to see whether these 
quantities are also dominated by collective modes for not too large values 
of k and 0~ and how they compare with Ans~itze made about them in the 
literature. ( 29, 30) 
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APPENDIX A 

We derive properties of the collision operator A k defined in Eq. (2.7) 
which are needed in the main text: We write A k as a sum of real and 
imaginary parts 

A k = A~ + iA~ (A.1) 

so that 

A~ a2f d~f dv2q) (v2)[v12 . ~[ Q,~ {1 + cos(k, a)P,2 } (A.2a) 

AL = o2f  dv2  b(v2)(vl2.  )Qs sin(k �9 or)P12 (A.2b) 

Here A k acts on functions of v~, # is a unit vector, ~r = a~, PI2 interchanges 
vl and v 2 in functions of v~ and v 2 and the operator Qa acts on a function 
h(Vl, v2) as 

Oah (v 1 , v2) = �89 { h (v,, v2) - h  (v] ~, v~') } (A.3) 

with the restituting collisional velocities v~' and v~' given by v~' = v 1 - 
(v12- 6)d and v~" = v 2 + (v12.6)#, similarly as below Eq. (2.8). 

The relations (A.2) follow from Eq. (2.7) by adding to (2.7) a similar 
expression in which 8 is replaced by - 8, dividing by 2, and taking the real 
and imaginary parts. As a result the condition g.  ~ > 0 on the v' integral in 
(2.7) may be omitted in (A.2) and replaced by a factor 1/2 in (A.3). 



260 de Schepper and Cohen 

For Qa we need the following properties, which follow immediately 
from Eq. (A.3). 

(i) If the function h(Vl,V2) in (A.3) is symmetric (or antisymmetric) 
under the interchange of vl and v2, the result Qah(vl,v2) is symmetric (or 
antisymmetric) under the same operation. 

(ii) If v~ = ( -  Vlx, Vly, t31z ) and v~ = ( -  t32x , l)2y , V2z ) and the function 
is related to the function h by h'(V'l,V~)= h(vl,v2) then Q,~,h'(v'l,v~)= 

Q,~h(vl, v2), where 6' = ( - a  x, oy, oz). A similar property holds for the y and 
z directions. 

(iii) Q~ is Hermitian with respect to the inner product ( ( . . . ) 1 > 2  
where the brackets labeled 1 and 2 denote velocity averages over v 1 and v 2 
with weight functions ~(vl) and q>(v2), respectively. 

(iv) Qa is a projection operator, i.e., Q~ = Qa. 
(v) Q# 1 = 0 and Qa commutes with any function of the center of mass 

velocity V =---�89 + v2) and with any function of vj2 - (vl2. ~)8, i.e., any 
function of the components of that part of the relative velocity vl2 which is 
orthogonal to 8. Also, Q~ commutes with any function of IVl2.8 I, in 
particular with (vl2 .8)  l when l is even. For odd values of l one has 

Q~(v,2.8)Zh(v,,v2) = (v,2- 8)~(1 - Q~)h(v,,v2) (l is odd) (A.4) 

Next we discuss the properties of A k. 
(1) The first property of A k we need, reads 

A~: H (  #l [t2 /*3) ---> H (  p,l #2 /.t3) (Izi = ---) 
(A.5) 

A/: H (  gl /~2 /*3) -+ H (  ~, /*z - ~3) (~i "~ ~ )  

where H ( +  + +)  stands for all functions of v~ which are even in VZx, vly, 
and vlz; H ( -  + + )  stands for all functions which are odd in v~x and even 
in Vly and vl: and so on. We take k in the z direction. The relation (A.5) 
follows from (A.2) and the property (ii) for Qa given above. Furthermore, it 
follows from the defining equations (A.2) and (A.3) that Ak R and A{ are 
invariant under the interchange of the x a n d y  components of vl. 

(2) For any two functions f(vl) and g(vl) one has 

( f (v , )A~g(v , ) ) ,  

-41~ de[(l+ cosk- a)(((Q,~(f(v~) + f(v2))} 

• Iv,='~l(Qa(g(v,) + g(vz))) ) l )2  

+ (1 - cos k -  ~r) ( ( ( Q,~ ( f ( v , )  - f (v2)  ) } 

x [ v 1 2 " e l ( Q ~ - ( g ( v l )  - g (v2 ) ) )> l>2  ] (A.6) 
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where the action of Q,~ is restricted to the brackets ( . . .  } in which it 
occurs. The result (A.6) follows from Eq. (A.2) and the properties (i), (iii), 
and (iv) for Qa. The relation (A.6) implies that A(  is Hermitian, i.e., 

A•* = A(  (A.Y) 

and that A(  is seminegative definite, i.e., 

( f(v0AkSf(v0},  ~< 0 (A.8) 

for any real function f(v,), since in (A.6) 1 + cosk .  cr/> 0. For k = 0 the 
equality sign in (A.8) holds if f(v 0 is a collisional invariant, i.e., Q~(f(v 0 + 
f(v2)) = 0, i.e., f(v]) is a linear combination of 1, v I and v 2. For k ~ 0 the 
equality sign in (A.8) holds if one has in addition that Q~(f(vl) - f(v2)) = 0, 
which means that f(vl) is a constant. In fact the unit function, cp~, is a zero 
eigenfunction of A k for all k, i.e., 

Akepl = 0 (A.9) 

while for k = 0 one has 

A0~Pj = A~epj = 0 ( j  = 1 . . . .  ,5 )  (A.10) 

where ~pj denote the linear combinations of the collisional invariants given 
in (2.24)-(2.28). 

(3) For any two functions f(v]) and g(v0 one has from (A.2) 

( f ( V l ) A l  g ( v l ) ) l  = a 2 f  dSsink.  ~ (  (f(Vl)(Vl2" ~)~.~(V2))1)2 (n. l l )  

If on the right-hand side we let Q~ act to the left, use (iii), apply the relation 
(A.4) with l = 1, and interchange v] and v2, the result can be written as 

( g(vOA~7(Vl)}, = ( g(v,)A~f(vl)},  

- o 2 f d 6 s i n k  �9 a ( (  g(vl)(V,2 �9 8)f(v2)}l}2 (A.12) 

Here the left-hand side of (A.12) is equal to the left-hand side of Eq. (A.11) 
by the definition of A~ t. In the second term of (A. 12) and in the following, 
integrals over the unit vector 8 of the following form occur: 

(A.13) f d~cosk ,  o = 4~rjo(ko ) 

f d8 8~ sink. Gr = 4 r d ~ j , ( k o )  (A.14) 

f dSO.~ cos k. ~, = 4 r r 6 ~ j l ( k o ) / k o  - 4~l~l~Bj2(ko ) (A.15) 

- 4rclc,~Icfil~vj3( ko ) (A.16) 
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where 8~ and /~ denote the components of the unit vectors 8 and /~, 
respectively, and j l(x) are spherical Bessel functions3 l~) The relations 
(A. 14)-(A. 16) follow from (A. 13) by taking partial derivatives with respect 
to the components of k. 

Using Eq. (A.14) in the second term on the right-hand side of eq. 
(A. 12) yields 

A~* = A~ 4wa2 j,(ko){l+25,(+,l- 1+,5,(~21} (A.17) 
(tim) '/2 

where ~1(vl) and ~2(v0 are given by (2.24) and (2.25), respectively, and 
151, (I are defined with respect to the inner product ( �9 �9 �9 ) l ,  similarly as in 
(2.31). 

(4) A~ acting on v I and v~ yields 

A~v, = - d~ sin k-  dv 2 q~(v2)(v,2 �9 
(A.18) 

V2) �9 ~" A g J 

as follows from Eqs. (A.2b) and (A.3). Carrying out the integrals over 8 as 
well as the integrals over v 2, using (A.16), yields 

AlVl  = 2~ ' a  2 
5tim 

4 9 0 2  

5 

1 2__ 2fro 2 
Auv' 5tim j , (ko) (v , .  1~){5 - 3/3my 2 } 

+ 2~____~ 2 j3(ko)(v l , ~){5(Vl , ~ ) 2  3u 

From this result one can derive how A~ acts on the functions q02 , . . . ,  ~5 
defined in (2.25)-(2.28). The result can be written as 

[ f6  -- 2 x/3cp8] (3~v)1/2 
A~qo 2 = f ~  j , (ko)  ~p, + - ~ - %  ~ 5nto j3(k~ nt o 

j , (ka)(5 +/~mv 2) + j3(ko)flm[v 2 - 5(v,.  k)2] }l~ 

A 
j , (ko)  + j3(ko) } (v," k)v, 

(A.19) 

(A.20) 
g ] A~cp3_- # j l(ko) --~-q~2 + q07 j3(ka)qqo nt o 10nt 0 

A~cp4 = -- ~ [jl(kO) +j3(k~ 
5 nt o 

A ~  5 = - ~ -  [ j , (ko)  + j3(ko) ]~9  
5 nt o 



Very-Short-Wavelength Collective Modes in Fluids 263 

where (nto) - l =  4o2(~r/flrn) 1/2, according to the discussion in point 5 of 
Section 2, and where we introduced the polynomials 

CD6(u = ~ml)lx�9 
( ~ m )  1/2 

,7(vl) = -f6- 5) 

%(vl) = �89 f lm(v~ + v~y-2v~) (A.21) 

r9(vl) = [3mv~yvlz 

tim( 3~m ,1/2 . "-~'- ) 1~1z(u 2 -- 51)21z ) ~10(u 
\ 

which are such that (9~Pz)~ = 8jl, with j ,  l < 10. Using in Eq. (A.20) that for 
small k, j~(ka) = ka/3  and j3(ko)-..k 3 we find 

2(3~')1/20 
Pj_n• - 45tE kcp8 + 0 @  3) 

(15rr)l/2a 
P x n x A ~ 3  = 30te ktp7 + O(k 3) (A.22) 

P • nxA~ep 4 = f~ o 15t~ kCp6 + O(k3) 

where t~ = to/X and where P_L projects orthogonal to q01 . . . . .  rps. We also 
need a relation similar to (A.22) for the free streaming term - ik.  v in (2.5), 
i.e., 

i 
Pxik.vl~p2(vl) = _ 2 ~ (tim) 1/2 keps 

1 1 ~  i kcp7 (A.23) Pxik"  v,q%(v~) = -~ (flm)V z 

i kq?6 P Lik" vl~4(v~)  - ( ,&n)~/z  

which follows from the definitions of P• and ~pj. 
(5) Finally, we consider the matrix elements which appear in the 

matrix representation (3.5), i.e., 

aj,t(ko) = (~AkCP,)l (A.24) 

The first ten orthonormal polynomials q0j are given in (2.24)-(2,28) and 
(A.21), A complete set of orthonormal polynomials can be obtained by 
supplementing the set ~ . . . . .  ~0  with an infinite number of Hermite 
polynomials of increasing order in vI~, vl~, and vl~. 
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As a consequence each function cpj, with j = 1 , . . . ,  m, is an element 
of one of the subspaces H(  /q, /*2, /*3) introduced in (A.5), i.e., each r is 
either even or odd in vlx, vly, and Vlz. We remark that closed expressions 
for all elements flj,t in (A.24) can be derived using the generating functions 
for the Hermite polynomials. However, since these expressions are rather 
involved (24) we restrict ourselves here to a few general properties of the 
matrix ~2j, t and only give the elements which are needed in the main text. 

Owing to Eq. (A.5), ~2j, l is real when q0j ~ H(  /q /'2 /*3) and q~l 
~ H ( ~ 1 ~ 2 ~ 3 ) ;  ~j,l is purely imaginary when ~j~H(/ . t l /~2P,3)  and q0 t 

H( ~h #2 - /*3) and ~j,l is zero otherwise. In particular the diagonal 
elements ~2j, j are real and 

aj,j(ko) < 0 (A.25) 

as follows from Eq. (A.8). The equality sign in (A.25) holds for all k i f j  = l, 
and for k = 0 if j = 1 . . . . .  5, as is discussed below Eq. (A.8). Because of 
Eqs. (A.7) and (A.17) one has that 

f~t,j(ko) = f l j , l ( k O )  - i 4'a'~ j l ( k o ) { ~ l , 1 8 j ,  2 - 3128j 1 } (A.26) 
(tim) 1/2 , , 

which means that f~l,j is a symmetric matrix except that ~21, 2 v ~ f~2,1. Owing 
to (A.9) all elements f~j,l(ko) vanish. Using these properties for ~2jj(ko) we 
can determine them explicitly. Firstly, for j ,  l < 5 one finds 

while 

~2,2(x ) =  2 1 [ l _ j 0 ( x ) + 2 j 2 ( x ) ]  
3 nt o 

~3,3(X ) = 2 1 [1 --jo(X)] 
3 nt o 

~4,4(X ) = ~-~5,5(X ) = _ 2 ~ [ 1 - jo(x) - j2(x)  ] 
3 n t  o 

1 
~l,2(x) = - i~~ -~o j , ( x )  

= = 1 i j l ( x )  

f~j,l(x) = 0 otherwise for j ,  l ~< 5 (A.27) 

We remark that the off-diagonal elements in this list can be read off from 
the results (A.20) by taking inner products with 99j on both sides of the 
equations and using that (cpj) is an orthonormal set. The diagonal matrix 
elements in the list (A.27) are obtained after a lengthy calculation starting 
from Eqs. (A.6) and (A.3) where we introduced in Eq. (A.6) center of mass 
and relative velocities in order to perform the integrals over v 1 and v 2 and 
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where the relations (A. 13)-(A. 16) were used in order to perform the integral 
over 8. 

The matrix elements ~j,t outside the 5 • 5 block given in (A.27) and 
which are needed in the main text are 

1 t 16 a a 16 �9 ~'~6'6(X) : ~'~9'9(X): ~ l-- ~ -l- ~" jo(X)-- -~T j2(X)- "~ J4(X)) 

aT,7(x) = t -  + 

1 16 4 j o ( x  ) ~lJ2(x)+_j~S4(X) } f~8'8(x) = ~ { - 15 + - 24 �9 
(A.28) 

1 ~ i[j,(x) + j3 (x ) ]  a4'6(x) = as'9(x) = 5 nt o 

~23,7(x ) = 10nt ~ i Jl(x) 

a2,s(X ) --- ~ i[ 2jl(x) -- 3j3(x) ] 

The off-diagonal elements in this list are obtained from Eq. (A.20) and the 
diagonal elements from Eqs, (A,3) and (A.6) in a similar way as discussed 
below Eq. (A.27). We remark that the limiting values ~2j, l(0 ) and f~j,l(~) 
can be read off from Eqs. (A.27) and (A.28), using that ] t ( ~ ) =  0 for 
l = 0, 1 . . . .  , 0% thatjo(0 ) = 1, and thatj l(0 ) = 0 for l = 1 . . . .  , oe. 

APPENDIX B 

We derive four properties of the operators L(k) and L'(k)  defined in 
Eqs. (2.5) and (2.6). We show that these are sufficient to prove the spectral 
relations of L(k) and LS(k) mentioned in Section 2 [i.e., eqs. (2.50)-(2.56)]. 
It is also shown that the set of operators L (M~ (k) and L s(M) (k) introduced 
in Section 3 and in particular/7(k) and LS(k) have the same four properties 
and therefore obey similar spectral relations, 

We need the following properties of L(k) and LS(k). 
(1) The real and imaginary parts of L(k) and LS(k) satisfy 

Re L (k), Re L '  (k): H (/z 1/,2/~3) ---> H (/z 1/~2/'3) 
(B.1) 

ImL(k) ,  ImLS(k): H ( ~  1 ~2~3) --> H (  I~l ~t2 - ~3) 

where the function spaces H(/~l ~2 ~t3) with/~i = -+ introduced in (A.5). This 
property follows from Eqs. (2.5), (2.6), (3.4), and (A.5) and using that 
A s = A R = A~ [cf.(2.16)]. Also, the operators L(k) and LS(k) are invariant 
under the interchange of the x and y components of the velocity v (with k 
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in the z direction as in the main text and in Appendix A), since Ak, A ~, 
ik- v and A k are invariant under this interchange. This has been used under 
point 3 of Section 2. 

(2) L(k) and LS(k) act on the unit function, ~1, as 

L(k)cp 1 = LS(k)~l _ - ik c?2 (B.2) 
( t im) 1/2 

with ~2 given in Eq. (2.25). This property follows from Eqs. (2.5), (2.6), (3.4) 
and (A.9). 

(3) The Hermitian conjugates of L(k) and LS(k) read 

Lt(k) r*(k)  + ik S ( k )  - 1 = 
( Bm)l/2 S(k) 

( B . 3 )  
LSt(k) = L~*(k) 

This follows from Eqs. (2.5), (2.6), (2.10), (3.4), (A.7), and (A.17). We 
remark that in Eqs. (2.5) and (2.6), k .  v and A s are Hermitian operators but 
that A k and A k are not Hermitian. The relation (B.3) implies that the real 
parts of L(k) and LS(k) are Hermitian operators. 

(4) The real part of L(k) is semi-negative-definite, i.e., 

( ~ * ( v ) ( R e L ( k ) } ~ ( v ) )  < 0 (B.4) 

for any complex function ~(v). This follows from (A.7) and (A.8) since 
ReL(k)  = nxA~, according to (2.5) and since A k is a purely imaginary 
operator. The equality sign in (B.4) holds for k 4 ~ 0 if and only if q? is a 
multiple of the unit function and for k = 0 if q5 is a linear combination of 1, 
v and v 2 [cf. the discussion below Eq. (A.8)]. The relation (B.4) also applies 
to the real part of L~(k) since ReLS(k) = ReL(oe) .  

From these four properties we derive the spectral relations mentioned 
in Section 2. We start with the relation (2.52). Let, for a certain for value of 
k, L(k) have an eigenfunction ~I,(k, v) with eigenvalue z(k),  i.e., 

L (k)~(k, v) = z (k)xI'(k, v) (B.5) 

Then, according to (B.3), the operator Lt*(k) acts on this function as 

Lr v) = z (k)q~(k, v) 

ik S ( k ) -  1 
- ( t im)'~ ~ S ( k )  ( ( q ' ~ E ) q h -  (qt~,)~2) (B.6) 

Furthermore, L**(k) acts on the unit function, ~1, as 

ik (B.7) 
Lt*(k)cP, = ( f im)l /2S(k)  q)2 
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as follows from (B.2) and (B.3). Therefore, if we define qS(k, v) by 

( b ( k , v ) = A * [ ' ~ * ( k , v ) + [ S ( k ) -  1 ](T*~01)cpl ] (B.8) 

with A * an arbitrary constant, then L t* acts on the complex conjugate of (I) 
a s  

Lt*(k)~b*(k,v) = A z(k)~(k,v) ik S(k)  - 1 ([3m),/2 -~-(~) (xI'~2 > (B.9) 

For the second term on the right-hand side we use the relation 

- ik ('?cp2 > = z(k)(xPep,) (S.10) 
(~m)' /2S(k)  

which follows from Eq. (B.5) by taking the inner product of both sides of 
the equation with r and by letting LOt) act to the left, using (B.3). 
Substitution of (B.10) into (B.9), using (B.8) and taking the complex 
conjugate of the resulting equation yields 

Lt(k)dP(k, v) = z*(k)qb(k, v) (B. 11) 

Thus, the function r given by (B.8) is the left eigenfunction of LOt) which 
corresponds to the right eigenfunction ,I, in (B.5). The constant A in (B.8) is 
determined by the normalization condition (2.30, i.e., (q~*'I'> = 1, so that 

A = (('I'2> + I S ( k ) -  1]('?>2} - '  (B.12) 

and therefore Eq. (2.52) follows from Eqs. (B.8) and (B.12). The relation 
(2.53) can be derived in a similar way, in particular, by setting S(k) equal 
to 1 everywhere in the proof given above, but we omit the details. 

Next we prove the relation (2.50). We start from 

1 L*(k))'I'> (B.13) R e z ( k ) -  2 ( ~ >  (dP{L(k)+ 

which follows from Eqs. (B.5) and (B.11) if one lets L*Ot) in (B.13) act to 
the left. Therefore 

1 <~{ReL(k))~b> (B.14) R e z ( k ) -  (q,~b> 

where we used that Re LOt) is an Hermitian operator. Substitution of (B.8) 
for ~ and using that, according to (B.2), Re Lot)q~ 1 = 0 yields 

( ~ ( R e  L(k) )**)  
Rez(k) = <*xI'*> + IS(k)  - 1]1<. 1>12 (B.15) 

We first observe that the unit function, ~1, is not an eigenfunction of LOt) 
for k # 0 due to (B.2), so that 'I" =# cp~. Therefore, owing to Schwartz's 
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inequality, ](~t~l>[2 is strictly smaller than ('t,,t'*). Secondly, the static 
structure factor S(k) obeys S(k) >1 O, This is a consequence of the fact that 
the intermediate scattering function F(k, t) defined in Eq. (1.2), is for t = 0 
an average over a non-negative function and equal to S(k). Hence, the 
numerator of the expression on the fight-hand side of Eq. (B.15) is for 
k : / : 0  strictly positive. Furthermore, since q '# :  q~l, the denominator in 
(B. 15) is strictly negative for k v ~ 0 as discussed below Eq. (B.4). Therefore, 

R e z ( k )  < 0 (k ~ 0) (B.16) 

which is the relation (2.50). The relation (2.51) is proved similarly by setting 
S(k) equal to 1. 

Next we prove the relation (2.55). The eigenfunction ~(k, v) in (B.5) 
can be written as 

,t,(k, v ) =  'Is+ (k,v) + ,I,_ (k,v) (B.17) 

with 

+ •  (k,v) = �89 ['~(k, vx,Vy,V~) +_ +(k, vx,vy - v~)] (B.18) 

so that ~+  is even and 'J/_ is odd in v z. Substitution of (B.17) into (B.5), 
writing L(k) as a sum of a real and an imaginary part and using the 
relation (B.1) yields two equations: one equates the functions in (B.5) which 
are even in vz, and the other equates the functions which are odd in vz, i.e., 

{neL(k))qJ+ + i{ImL(k))qJ_ = z(k)~+ 
(B.19) 

( R e L ( k ) ) f f _  + i ( I m L ( k ) ) + +  = z(k)+_ 

Subtracting both equations and taking the complex conjugate yields 

L(k)( 'I '* -r  ) = z*(k)('$* - q ' *  ) (B.20) 

Thus ~t'* - ~*_ is an eigenfunction of L(k) with eigenvlaue z*(k). This and 
Eqs. (B. 17) and (B. 18) lead to the relation (2.55). The relation (2.56) follows 
in a completely similar manner. 

Finally, we discuss the general properties of the set of operators 
L(M)(k) with M >/5 defined by Eqs. (3.1) and (3.6). This includes in 
particular the operator L(k) introduced in Section 3 above Eq. (3.8) for 
M = 5. In fact we restrict ourselves to the operator/~(k), since the general- 
izations to  L(M)(k) are rather obvious. 

Using Eqs. (3.1), (3.5), and (3.6), the operator/~(k) can be written as 

L(k)  = - ik.  v + nxenAkP n + nA k 

+ [nx g+ (k)(cp2 - P,  cp2P, ) + nxh+ (k)(1 - PH ) ] e +  

+[nxg_(k) (rp2-  PHop2PH) + nxh (k)(1 - PH)IP (B.21) 
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where P~ projects on the five functions ep~ . . . .  , eps, i.e., 
5 

t". = I j)( 0jl (B .22 )  
j = l  

where the g+ (k), given by Eq. (3.7), are purely imaginary and vanishing for 
k = 0 and k = m, and where the h e (k), given by Eq. (3.7), are real and 
strictly negative for all k. 

We mention the following four properties of /7(k), which are the 
analogs of the four properties of L(k) give above: 

(1) The real and imaginary parts of/~(k) satisfy 

Re/7 (k): H(/*,/*=/*3) --> H(/*1/*2/*3) 
(B.23) 

Im/7(k): H(/,,/*2/*3) ~ H(/*1/*2 - -  /*3) 

similarly as in (B.1), and/7,(k) is invariant under the interchange of v x and 
vy. To prove this property from Eq. (B.21) one needs the properties of 
k .  v~q~2, A t and A t that were also needed in order to prove Eq. (B,1). In 
addition one needs that Pu, P+, and P_ map functions from H( / ,  1/*2/*3) 
into H ( #  1/*2/*3) and that PH, P+,  and P_ are invariant under the inter- 
change of v x and v,. 

(2) /7(k) acts on the unit function, ~0~, as 

_ - ik (B.24) 

similarly as in (B.2). This follows from Eqs. (B.21), (B.22), (A.9), and (3.4), 
using that P+ cpl = C~l and P (p~ -- 0. 

(3) The Hermitian conjugate of/~(k) satisfies 

Lt(k) /7*(k) + ik S (k )  - 1 = (B .25)  
( fim)I/z S (k )  

similarly as in (B.3). This follows from the equations (B.21) and (3.4) since 
the operators Pn, P+,  P , r  �9 V are Hermitian; P+ and P commute 
with rp2 and with Pn and A k obeys Eqs. (A.7) and (A.17). 

(4) The real part of L(k) satisfies 

(~*{Re/7(k)}O)  < 0  (B.26) 

for any complex function �9 and the equality sign holds if and only if �9 is a 
linear combination of ~ . . . . .  ~s (when k = 0) or if �9 is a multiple of ~ 
(when k ~0 ) .  In order to prove Eq. (B.26) one needs: that Re/7(k) is 
Hermitian, as follows from (B.25); Eq. (A.8) for A t in (B.21); the fact that 
the h e (k) are strictly negative for all k and that - ik.  v, A t, and g_+ (k) in 
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(B.21) are purely imaginary and therefore do not contribute to Re L(k). 
We remark that the operator E'(k) introduced in Section 3 above Eq. 

(3.8) obeys the four properties mentioned in (B.1)-(B.4) for L'(k). This is a 
consequence of the definition of LS(k) given by Eqs. (3.2), (3.3), (3.6), and 
(3.7), i.e., Re/~S(k) = E(oo) and ImE~(k) = - k . v ,  but we omit the details 
of the proof. 

As a consequence of the four properties (B.23)-(B.26) of L(k) and the 
four similar properties of E~(k), the spectral relations (2.50)-(2.56) men- 
tioned in Section 2 apply both to the spectral decompositions of/~(k) and 
ES(k). Also, the statement made in Section 3 below Eq. (3.7) about the 
spectral decompositions of L(M)(k) and LS(M)(k) with M /> 5 follows in a 
completely similar manner. 

APPENDIX C 

We determine the hydrodynamic modes of L(k) and L'(k) which 
appear in Eqs. (2.29) and (2.30) for small values of k, using perturbation 
theory. The results are compared at the end with the hydrodynamic modes 
of the operators L(k) and L'(k), introduced in Section 3. 

We start with the five hydrodynamic modes of L(k) which are defined 
by Eq. (2.32), i.e., 

L(k)'Irj(k, v) = zy(k)~j(k,v) ( j  = H, ___,~1,u2) (C.1) 

where for k ~ 0 ,  the functions ~j(k,v) tend to linear combinations of the 
conserved quantities q~l . . . .  , % of L(0) [cf. (2.22)] and the zj(k) tend to 
zero. 

We expand the quantities in (C.1) in powers of k, 

L(k) = L(0) + ikL (0 + k2L {2) + . . .  (C.2a) 

qj(k,v) = xItj(O, v) + ikq}O(v) + k2x!t52)(u ) ...1- " ' '  (C.2b) 

zj(k) = ikz)')+ k2z)2) + "'" (C.2c) 

and equate the terms in (C.1) with equal powers in k. Thus 

L(O)~j(O, v) = 0 (C.3a) 

(L (') - z)'))~t'j(0, v) + L(0)q'J')(v) = 0 (C.3b) 

( t  (2) -- Z)2))xIFj(0, V ) -  ( t  (l) -- Z) I))~ItSI)(v ) 4" t (0)xt t(2)(v)=0 (C.3c) 

The first equation, (C.3a), is satisfied, as discussed above. In Eq. (C.3b) we 
let the projection operator P q defined in (B.22) and subsequently its 
orthogonal complement P• = 1 - P/~ act on both sides of the equation, 
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yielding two equations which read 

Pt+( L ( ' 1 -  z/'))PH~j(O, v) = 0 (C.4a) 

e•  + P• = 0 (C.4b) 

where we used that "I'j(0,v)= Pn't '/(0,v) and PI+L(O)= L(O)Pn = 0 as 
follows from (2.22) and (B.22). Using the representation (B.22) for P~/, Eq. 
(C.4a) reduces to a 5 • 5 matrix eigenvalue problem for the matrix repre- 
sentation of L (1), i.e., for the matrix with elements 

L(])~(~)jL<I)(~I ) ( j , l  < 5) (C.5) 

These can be obtained from (C.2a) and Eq. (2.5), using for j ,  l < 5 

- i k  ~J'2~l'l "1- 5 ' ' (~ j<- - ik .  v)qo/)-  (~7/2 {~,1~,,2 "l- 1 .~6-(~j3(~/2 ..1_ (~j,2~/,3) } 

(C.6) 

the result (A.27) for the averages of A k in Eq. (2.5) and the expression (3.4) 
for A k. Thus one finds 

L~,'?- - 1 
(tim) 1/2 

- 1  L 12 - 

(flm)'/2S(O) (C.7) 

2,3 = 3,2 = 3(fim)t/z 

Lj(,] ) = 0 (otherwise for j ,  l < 5) 

where in the expression for L2(ls ) the relation for (nto)-1, given below Eq. 
(A.20), has been used. 

Next we use the following thermodynamic properties of a hard 
sphere gas. The equation of state is given by p(n, T)= nkBT(1 + ~ r 
c~ = 3 ke ; y =  cp /%= 1 + a2T/nc~xr= 1 + ~ S(O)(p/nkBT)2; c=  
( ' / /mnxr) 1/2= [u 1/2. Here p is the pressure, cp and c~ are the 
specific heats at constant pressure and volume, respectively, XT = 
(On/Op)r/n is the isothermal compressibility, related to S(0) by the com- 
pressibility theorem: S(0) = nk B TXr and a = - (On/O T)p/n is the expan- 
sion coefficient. 

Thus, using the equation of state, the matrix element L2(,13 ) in Eq. (C.7) 
can be written as 

2,3 = - ~ c = - ~ ( C . 8 )  
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where the quantity g has been introduced in Eq. (2.41). From this result 
and the relation 7 -- 3mc2S(O) given above, follows straightforwardly that 
the matrix Ls! )) has three eigenvalues equal to zero and two eigenvalues 
equal to + c with eigenvectors '['~,,~I',2, r and ~'+, respectively, which 
are given by Eqs. (2.46), (2.47), (2.39), and (2.43). 

The left eigenfunctions Oj(k,v) corresponding to the right eigenfunc- 
tions ~j(k,v) in Eq. (C.1) are obtained from the relation (2.52) which holds 
for all values of k. In particular the expressions for the left hydrodynamic 
modes to lowest order in k, Oj(0,v) with j - -  H, _+, Vl, v2, which are given 
by Eqs. (2.40) (2.44), (2.46), and (2.47) are a consequence of the relation 
(2.52). We remark that (~j(0, v)'~t(0, v)) = 8jr and that 

(Oj(0, v)L ~ ') ~',(0, v)) = z)08j, (C.9) 

which is a consequence of Eq. (C.4a), using that L ~1) on the left-hand side 
of Eq. (C.9) may be replaced by PHL~OPH . 

Next we consider the equation (C.4b). Since the operator P• com- 
mutes with L(0) and projects orthogonal to all five zero eigenfunctions of 
L(0), the equation (C.4b) determines uniquely the functions P• for 
j = H, -I-, pl, y2, i.e., 

1 (C.10) 
= L(0) 

Next we determine the coefficients z) 2) in the expansion (C.2c). By multi- 
plying Eq. (C.3c) to the left with Oj(0,v) and averaging over all v one 
obtains 

+ v)) (c.11) 

where we have used that ~j(0,v) is a linear combination of conserved 
quantities and that L(0) is a Hermitian operator. 

In the first term on the right-hand side of Eq. (C.11) we write q,~~ 
as a sum of Ptr't'~')(v) and P•176 The contribution of P/~'~.')(v) 
vanishes due to Eq. (C.9) and for P• we substitute the relation 
(C.10), so that 

Expressions for the transport coefficients v e, DTE, and I" e which appear in 
Eqs. (2.38), (2.42), and (2.45) follow from this relation using the explicit 
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expressions for ~j(0, v) and qbj(0, v). Firstly, with Eq. (2.46) follows that 

VE= -(efl4{ L(1)P• L ~  P• + L(2))9)4} (C.13) 

Secondly, from Eqs. (2.39) and (2.40) one has that 

l 1 L(2) 

Here we have used that it follows from Eq. (B.3) that the operator in 
brackets ( . - -  } on the right-hand side of Eq. (C.12) is Hermitian, and 
from Eq. (B.2) that this operator yields zero when acting on the unit 
function q~l either to the right or to the left. Furthermore we used the 
thermodynamic relation • = mflc2S(O) which was given above. Finally, 
from Eqs. (2.43), (2.44), and (C.14) and the thermodynamic properties 
described above follows that 

1 1 ( ( L ( 1 ) P • 1 7 7  (C.15) FE = ~ ( Y -  1)DTE- ~ ~02 

where furthermore is used that the operator in brackets ( . . . )  in Eq. 
(C.12) transforms from the function space H(/z 1/~2#3) into the function 
space H(bq bt2bt3), as follows from (B.1), so that cross terms of the form 
(ep2 ( �9 -. )%)  vanish. Next we use in the expressions for v E, DTE, and F e 
that 

Pj_L(')rpj(v) = ~Jj(v) ( j  = 2,3,4) (C.16) 

where Jz(v)= %(v) denotes the normalized longitudinal current given in 
Eq. (A.21), J3(v) = q~7(v) denotes the heat flow function and J4(v) = r a 
shear flow, while the coefficients ~. are given by 

e 2 -  (3flm)~/2 + - (3flm)l/z -~ 

( ) e 3 = -  3 - ~  ~ 3 - ~  ( l + ~ - n o 3 x )  (C.17) 

-1 + nx f~;,6(O)_ --1_. (1 + ~5no3x) e 4 - 
( tim)I/2 T ( tim)l/2 

where the primes indicate first derivatives with respect to k. The results 
(C.16) and (C.17) follow from the definition (C.2a) for L (0, the expression 
(2.5) for L(k), the equations (A.22) and (A.23), and the definition (A.24) 
for ~jj. 
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We remark that the first terms on the right-hand sides of Eq. (C.17) 
arise from the free streaming term in L(k), the second terms from the linear 
term in the expansion of the operator nxA k present in L(k), and that the 
operator A k in L(k) does not contribute since P• k = 0 as follows from Eq. 
(3.4). Furthermore one has 

( 1 )  w, 
JJ~(O~ Jj (JjL(O)Jj) ( j  = 2,3,4) (C.18) 

where the coefficients wj are given by (~2) 

w 2 = w 4 = 1.01600 
(C.19) 

w 3 = 1.02513 

Thus we find from Eqs. (C.14)-(C.19) and (A.24), using that L(0) = nxA o 

w4 e2 1 nxa2,4(0 ) 
PE = /,/X~-~6,6(0 ) 2 

w3e~ ; .  nxa;',3(0) 
DTE = r/XV~7,7(0 ) 

W2 e2 1 
FE = ~ ( 2 / -  1)DTE 

(C.20a) 

(C.20b) 

where the double primes denote second derivatives with respect to k. We 
remark that the transport coefficients are built up from diagonal matrix 
elements ~2j4(ko ) with j = 2, 3, 4 and j = 6, 7, 8 and the off-diagonal matrix 
elements f~2,8, ~23,7, and f~4,6 which are present in the coefficients ej [cf. 
(C.17)]. The explicit values of these matrix elements can be read off from 
Eqs. (A.27) and (A.28), i.e., a6,6(0 ) = a8,8(0 ) -~"-  4(nt0)- t ;  a7,7(0 ) -~" 
- ~(nt0) - l ;  f~',2(0) = - ~ a2(nto)-l; f~',3(0) = - ~ oZ(nto)-l; and ~2~,4(0 ) = 
_ ~ o2(nto)- 1. The expression for F e given in Eq. (C.20c) can be written in 
a form similar to that given below Eq. (1.1), i.e., 

Fe = �89165 - 1)DTE + Zv3 e + l~E/mn (C.21) 

with ~e, the Enskog value of the bulk viscosity, given by 

~e = mn2x(~ ~2~,4(0) - �89 f~',2(0)) - ran~ (C.22) 
9rE 

The expressions (C.21) and (C.22) follow from (C.20c) using that w 2 = w a 
[cf. (C.19)], e 2 =  4e42 [cf. (C.17)] and [~6,6(0)= ~'~8,8(0) aS discussed below 
(c.20). 

We remark that the Boltzmann values of the transport coefficients are 
obtained from Eq. (C.20) by omitting the higher density (collisional trans- 

1 nx~2~,,2(0 ) (C.20c) 
4 2nxf~8,8(0) 
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fer) corrections ),j(0) and replacing the coefficients ej by their low-density 
limits, i.e., by the first terms in Eq. (C.17). 

Next we consider the hydrodynamic modes of the operator/~(k) which 
is introduced in Section 3 above Eq. (3.8) and explicitly given by Eq. (B.21). 
The modes are determined by the eigenvalue equation 

L (k)gj(k,v) = ~j(k)~j(k,v) ( j  = H, +,v,,v2) (C.23) 

for small k, similarly as in (C.1). We will need the equality 

( ~jL (k) ~,) = ( ~pj/~ (k) cp,) (C.24) 

which holds for all k and j , / <  5; j = / = 6 ;  j = / = 7 ;  j = 3 , l = 7 ;  and 
j = 4, l = 6. This follows from Eqs. (B.21) and (3.7). As a consequence of 
(C.24) the operator /~l), which occurs in the expansion /~(k)= L(0)+  
ikff~ 1) + k2/~ r + �9 �9 -, has the same matrix representation as L ~0 which 
occurs in Eq. (C.2a), i.e., ~!])= L~] ), for j , l  < 5. Therefore, according to 
the discussion below Eq. (C.8), the eigenfunctions in (C.23) are for k = 0 
equal to those in (C.I), i.e., ~j(0, v) = 'Itj(0, v), while for the eigenvalues one 
has that ~j(k) = zj(k) up to linear order in k. 

Also,___a left eigenfunction Oj(k, v) of L(k) is related to a right eigen- 
function "I~j(k,v) in the same way as %(k,v) is related to ~j(k,v) i__n Eq. 
(2.52). This has been discussed at the end of Appendix B. Thus Oj(0, v) 
= Oj(0,v). We define the transport coefficients ~e, DTE, and FE correspond- 
ing to L(k) in a similar way as in Eqs. (2.38), (2.42), and (2.45), i.e., 

= = = - 2 + e ( k ' )  

z/4(k) = -/~TE k2 + 0(K 4) (C.25) 

Z+ (k) = + ick - I 'ek 2 + 0(k 3) 

Then it follows straightforwardly that ~E, D--TE, and F~ are given by expres- 
sions similar to (C. 13), (C. 14), and (C. 15), respectively, in which L(0), L (1), 
and L (2) are replaced by L(0), F (1), and/~(2). Next we write 

P• E~l)~j(v) = ~jJj (v) (C.26) 

similarly as in Eq. (C.16). From Eqs. (B.21), (A.23) (using that q02-,-ik �9 v) 
and (3.7) follows that ,z 3 = e3, ~4 = e4, and 

e 2 -  2 2~-nx 2 ( l + ~ n a 3 x )  (C.27) 
(3tim)l~ 2 5i ~23'7(0)- (3tim)'/2 

We remark that ~2 ~ e2 since the relation (C.24) does not apply to the 
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matrix elements j = 2, I --- 8 on both sides of the equation. Using further- 
more a relation similar to (C.18), i.e., 

JJ JY (Jj /7(0)Jj)  ( j  = 2, 3, 4) (C.28) 

which holds since each function Jj is an eigenfunction of/7(0) [cf. (B.21)] 
one finds that 

~E ----" e2 1 
nX~'~6,6(0 ) 2 nx~2'4(0) (C.29a) 

D--TE = e32 1 nxg;,3(0 ) (C.29b) 
nx-/f~7,7(0) 2,/ 

~2 I nxg2"2(0) (C.29c) r e  = 1 (.,/_ 1)~T E 2nxaT,7(0) 

Here the equality (C.24) has been used for the diagonal matrix elements 
j = l = 2, 3, 4, 6, 7 as well as the relation (J2L(O)J2) = nXaT,7(0)__which 
follows from the Eqs. (B.21) and (3.7). We remark that ~e and DTZ in 
(C.29) are equal to v e and DTE in (C.20) in "first Enskog approximation," 
i.e., with w 4 and w 3 in Eq. (C.20) replaced by 1. The quantity r e in (C.29c) 
differs in three respects from F e in (C.20c). Firstly in the appearance of w 2 
in (C.20c), furthermore e 2 4= e2 [cf. (C.17) and (C.27)] and ~2<8(0 ) ~ ~7,7(0) 
[cf. the discussion below (C.20)]. The origins of these defects are discussed 
below Eq. (C.27) and in Section 3 below Eq. (3.7). From Eqs. (C.27) and 
(C.29) follows that r e is for all densities about 30% larger than F E. 

Next we consider the hydrodynamic modes, i.e., the diffusion mode, of 
the operator L ' (k)  which is defined in Eq. (2.6). The Eq. (2.49) for the right 
and left diffusion mode eigenfunctions to lowest order in k, is an immediate 
consequence of Eqs. (2.23) and (2.53). An expression for the self-diffusion 
coefficient D E which appears in Eq. (2.48) can be derived in a similar 
manner as described above for v e, DTE, and I" E. Here we give only the 
result, i.e., 

DE = tim q~2 q~2 = tim (q02LS(0)q92) 

where we applied a relation similar to Eq. (C. 18) with the quantity w,, given 
by ws=  1.01896. (12) Furthermore using in (C.30) that Ls(O)= nxA* 
= lim~__,~ nxA t, according to Eq. (2.16), one has that 

1 w, (C.31) 
De = Bronx a2,2(0~) 
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where the value of ~2,2((X)) can be read off from (A.27), i.e., ~'~2,2(~) 
= _ ~ (n to) -  i. Thus the self-diffusion coefficient is expressed in the matrix 
element ~2,2 of A k for k ~ oe. 

Finally we consider the diffusion mode of the operator/~ '(k) which is 
introduced in Section 3 below (3,7). The right and left diffusion mode 
eigenfunctions are equal to 1 to lowest order in k, similarly as in Eq. (2.49). 
The result for the self-diffusion coefficient D e  corresponding to L ' ( k )  is 
similar to Eq. (C.30) and reads 

Since of 2 is an exact eigenfunction of P ( 0 )  with eigenvalue nx~2z2(oo) one 
has 

D--- e = _ 1 (C.33) 
flmnx~22,2( ~ ) 

Thus D E is equal to D E in first Enskog approximation, i.e., with w s in Eq. 
(C.31) replaced by 1. 

A P P E N D I X  D 

We derive Eq. (3.13) from Eq. (3.12) and a few results related to Eq. 
(3.13). 

The first term on the right-hand side of Eq. (3.12) obeys the equation 

1 1 
z - f+ (k, v) - F+ (k) z - f+  (k, v) 

X(1  + F+ (k){l+ I 
z - f + ( k , v ) -  F + ( k )  

• 1 1 (D.1) 
z - f+  (k, v) J 

which holds for any function f+ (k, v) and any operator F+ (k). Next we 
introduce the 3 X 3 matrix B(k, z) with matrix elements Bj, l (k ,  z)  defined by 

e j , , ( k , z )  = cgj z - ff,(k) cp, 

( 1 cp, ) (j ,  l < 3) (D.2b) 
\ % z - f+ (k, v) - F+ (k) 

where in the second step we used Eq. (3.12) and the fact that P ~ = 0 for 
j = I, 2, 3. Using the representation (3.10a) for the 3 • 3 matrix operator 

F+ (k)] 
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F+ (k), the identity (D.1) can be written as 

1 1 
z - f+ (k, v) - F+ (k) z - f+ (k, v) 

• 1 + ~ I~j)[F(k)(1 + B(k,z)F(k))]j j  
j,l=l 

1 } (D.3) 
x _f+ (k,v) 

where F(k) denotes the matrix with elements Fjj(k) given by Eq. (3.1 la). 
The matrix B(k,z) is related to the matrices A(k,z) defined in Eq. (3.14) 
and F(k) by 

B(k, z) = { l - A(k, z)V(k)} - 'A(k, z) (D.4) 

This follows by substituting the operator identity (a + b) - l =  a - l -  
a-lb(a + b)-1 with a = z - f +  (k, v) and b = - F +  (k) into Eq. (D.2b) and 
solving the resulting equation for B(k, z). 

From Eq. (D.4) follows that 

1 + B(k,z)F(k) = {1 - A(k,z)F(k))- '  (D.5) 

Using this result in Eq. (D.3) one sees that the first terms on the right-hand 
sides of Eqs. (3.12) and (3.13) are equal. In a completely similar manner 
one proves that the second terms on the right-hand sides of Eqs. (3.12) and 
(3.13) are equal. We remark that for this case the matrices corresponding to 
A(k,z), B(k,z), and F(k) are diagonal. This is a consequence of Eqs. 
(3.10b), (B.23) and the symmetry in v~ and Vy of the functions q~4 and %, of. 
(2.27), (2.28). This completes the derivation of Eq. (3.13) from Eq. (3.12). 

The coherent scattering function Se(k, w) given by Eq. (3.33a) can be 
written in view of Eq. (D.2a) as 

SE(k ' ~) = 1 S(k)ReB,.,(k, iw) (D.6) 

Therefore, using Eq. (D.4) for B(k,z) and the definition (3.17) for H(k,z) 
and D(k,z) one finds that 

S~(k,~o) = 1 S ( k ) R e  D(7! ,~, [H(k, iw)A(k, iw)]~,, (D.7) 

which is the relation (3.36). 
The relation (3.34) for the contributions of the collective modes to 

SE(k,o~ ) is derived as follows. First one substitutes Eq. (3.21) into the 
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relation (2.1) for FE(k, t) with L(k) replaced by L(k). Then for t/> 0 

F E ( k , t ) = S ( k  ) ~ e~(k)tMj(k) (D.8) 
j = H ,  +_ 

where with the definition (3.14) for A(k, z) 

D '(k, z) [A(k, z)F(k)H(k, z)A(k, z) ],,, (D.9) 
z = zs(k) 

Since from Eq. (3.17) follows that 

D (k, z)l = (1 - A(k, z)V(k))H(k, z) (D. 10) 

and by definition D(k,z) = 0 for z = zj(k) one has AFH = H for z = zj(k) 
and 

D'(k,z) ~,l z= zj~) 

The results (3.34) and (3.35) follow from (D.8) and (D.11) and the fact that 
FE(k, t) is symmetric in t. 

We remark that the coefficients Mj(k) can also be expressed in terms 
of right and left eigenfunctions of L(k) as Mj(K)= (~j(k,v))(~y*(k,v)~. 
This follows from Eqs. (2.1), (2.29), and (D.8). For k ~ 0  one has that 
M,q(0) = 1 - 1/7 and M+ (0)= 1/2),, from Eqs. (2.39), (2.40), (2.43), and 
(2.44) and the thermodynamic relation S(0)= 7(flmc2) -1. These results 
have been used in Section 3 under Eq. (3.36). 

For larger values of k the representation (D.11) for Mj(k) is more 
convenient since it avoids the diagonalization procedure discussed below 
Eq. (3.21). 

Finally we express the functions Ajj(k,z) with j , l  < 3 defined in Eq. 
(3.14) and the function A~(k, z) defined in Eq. (3.15) in terms of the plasma 
dispersion function Z(z) defined in Eq. (3.16). From Eqs. (3.14) and (3.15) 
one has that 

A j s ( k , z  ) = 
i( flm/2) z/2 

k + i,,x(Bm)'/2g+ (k) 

and 

- - X  2 

- 1  
x~- ~ )  (D.12) 

A~(k,z) = i( flm/2)l/2 - 1 f :  e -x2 
k+inx(f lm)~/2g_(k)  ~ dx x - i y ~ ( k , z )  

Here the integration variable x--(f lm/2)l /2v z is proportional to 

(D.13) 
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and 

y ( k , z )  --- ( t im /2 )  '/2 

y~(k ,z)  = ( B m / 2 )  '/2 

z - nxh+ (k)  
(D.14) 

k + inx( fim)'/Zg+ (k)  

z - nxh_ (k)  
(D.15) 

k + inx( f lm) ' /2g_ (k) 

are functions of k and z. The quantities aj,t(x ) in (D.12) result from the 
integrations over v x and vy in Eq. (3.14). They are, using Eqs. (2.24)-(2.28) 

al,l(x ) = 1 

. , , : ( x )  = = 

az,z(X ) = 2x 2 
(D.16) 

a l , 3 (x  ) = a3,1(x)  = 1~/ '6(2X2 -- 1) 

a2,3(x ) = a3,2(x ) = �89 2 -  1) 

a3,3(x ) = 2(5 - 4x 2 + 4x 4) 

With these expressions and the definition (3.16) for Z(z) ,  one finds the 
following results 

- i ( t im)  ' /:  
Z ( i y , ( k , z ) )  (D.17) 

k + inx( f lm) ' /2g_ (k) 
A~(k ,z )  = 

and 

Al , l (k , z )  = 
- i ( t i m / 2 )  '/2 

Z(iy(k,z)) 
k + inx( m)l/:g+ (k) 

- i ( t i m / 2 )  ' /:  
A ,,2(k, z) = A2,1(k, z) = + ~/2iy(k, z )a  ,,1(k, z) 

k + inx( flm)l/2g+ (k) 

A2"2(k'z) = i~/2 y ( k ' z )A l ' 2 ( k ' z )  (D.18) 

A, ,g (k , z )  = A3,~(k,z)  = k 4-6 ( A2,z(k ,z )  - A , , , ( k , z )  } 

A2,3(k,z) = A3,2(k,z ) = i ,~  y ( k , z ) A , , 3 ( k , z  ) 

A3,3( k , z  ) = ~ A ,,,( k , z )  - ~ A2,2( k , z  ) + �89 iy( k,z)A:,3( k , z  ) 

These equations are used in order to calculate the quantities D(k , z )  and 
H(k, z) in Eq. (3.17). 
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Expressions for the functions Afi(k,z) defined in Eq. (3.27a) and 
AS(k,z) defined in Eq. (3.27b) are obtained from the equations (D.14), 
(D.15), (D.17), (D.18) when one replaces everywhere h+ (k) by h+(oe), 
h_ (k) by h (oe), and g+ (k) by g_+ (oe) = 0, respectively. 
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